University of Maryland University College CMSC 150 - Introduction to Discrete Structures

Final Examination

1. ($10 \mathrm{pts}, 2$ parts -5 points each) For each the following groups of sets, determine whether they form a partition for the set of integers. Explain your answer.
a. $\mathrm{A}_{1}=\{\mathrm{n} \in \mathrm{Z}: \mathrm{n}>0\}$

$$
\mathrm{A}_{2}=\{\mathrm{n} \in \mathbf{Z}: \mathrm{n}<0\}
$$

b. $\quad B_{1}=\{n \in Z: n=2 k$, for some integer $k\}$

$$
\begin{aligned}
& B_{2}=\{n \in Z: n=2 k+1, \text { for some integer } k\} \\
& B_{3}=\{n \in Z: n=3 k, \text { for some integer } k\}
\end{aligned}
$$

2. (10 pts, 4 parts - 2.5 points each) Define $f: \mathbf{Z} \rightarrow \mathbf{Z}$ by the rule $f(x)=6 x+1$, for all integers x .
a. Is f onto?
b. Is f one-to-one?
c. Is it a one-to-one correspondence?
d. Find the range of f.

Explain each of your answers.
3. (10 pts, 2 parts - 5 points each) $f: \mathbf{R} \rightarrow \mathbf{R}$ and $g: \mathbf{R} \rightarrow \mathbf{R}$ are defined by the rules:

$$
\begin{aligned}
& f(x)=x^{2}+2 \forall x \in \mathbf{R} \\
& g(y)=2 y+3 \forall y \in \mathbf{R}
\end{aligned}
$$

Find $f \circ g$ and $g \circ f$.
4. (10 pts, 3 parts -3.33 points each) Determine whether the following binary relations are reflexive, symmetric, antisymmetric and transitive:
a. $\quad x R y \Leftrightarrow x y \geq 0 \forall x, y \in \mathbf{R}$
b. $\quad x R y \Leftrightarrow x>y \forall x, y \in \mathbf{R}$
c. $\quad x R y \Leftrightarrow|x|=|y| \forall x, y \in \mathbf{R}$

For each of the above, indicate whether it is an equivalence relation or a partial order. If it is a partial order, indicate whether it is a total order. If it is an equivalence relation, describe its equivalence classes.
5. (10 pts) Determine whether the following pair of statements are logically equivalent. Justify your answer using a truth table.

$$
p \rightarrow(q \rightarrow r) \quad \text { and } \quad p \wedge q \rightarrow r
$$

6. (10 pts, 2 parts - 5 points each) Prove or disprove the following statement:

$$
\forall n, m \in \mathrm{Z} \text {, If } n \text { is even and } m \text { is odd, then } n+m \text { is odd }
$$

Then write the negation of this statement and prove or disprove it.
7. (10 pts) Prove the following by induction:

$$
\sum_{i=1}^{n} 3 i-2=\frac{3 n^{2}-n}{2}
$$

8. (10 pts) Use the permutation formula to calculate the number permutations of the set $\{\mathrm{V}, \mathrm{W}, \mathrm{X}, \mathrm{Y}, \mathrm{Z}\}$ taken three at a time. Also list these permutations.
9. (10 pts, 2 parts - 5 points each) Translate the following English sentences into statements of predicate calculus that contain double quantifiers and explain whether it is a true statement.
a. Every rational number is the reciprocal of some other rational number.
b. Some real number is bigger than all negative integers.
10. (10 pts, 5 parts, 2 points each) Consider the following graph:

In each case, answer the question and then write the rationale for your answer.
a. Is this graph connected
b. Is this a simple graph?
c. Does this graph contain any cycles?
d. Does this graph contain an Euler cycle?
e. Is this graph a tree?

