Your task is to write a program that will store weather data based on location of the reading.  To complete this task, we will use a custom data model and implement the Observer and Adapter design patterns. Refer to the included driver for questions on class and method names used.
 
1.       Custom Data Model
a.i)   Create a data interface that will define only getters for Location(String), Time(Calendar), Temperature(double), Barometric Pressure(double), Humidity(double), and Wind Speed(double).  Location will be based on Zip Code which may have a dash, so use String for this.
(1 interface-WeatherDataInterface)
a.ii)Create a class that will store this data interface in a Map with the location as the key and a sorted set of the data interface as the value. 
                  * Constructor will take a Comparator parameter
                  * get the most recent data object based on the location as a parameter-getCurrentWeather
                  * add data object with the data interface as a parameter-add
(1 class-WeatherDataManager)
a.iii)            For sorting, create a comparator class that implements the Comparator Interface and base the comparison on time.  This will be used when creating the sorted set.
 (1 class-CalendarComparator)
 
2.       Observer Pattern
a.i)   Create custom listener interface for added data only with the method: weatherDataModified. 
(1 interface-WeatherDataListenerInterface)
a.ii)Create a custom Event class to be used for the added.  The added data event will push the added data object out with the method: getData.
(1 class-WeatherDataEvent)
Incorporate this into the custom data manager and fire events for the add and remove methods.
 
3.       Adapter Pattern
A data class from a customer will be used that contains Location(int), Time(Date), Temperature(double), Humidity(double), and Wind Velocity(double) (note the different name, data type, and missing elements).
a.i)   Write a Data Class that will represent this data with appropriate constructor for setting the data and getters for the data.
(1 class-ExternalWeatherData)
a.ii)Write an adapter class that will translate the data from the external data object to your data interface. Return 0 for any missing data elements and convert data as needed.
(1 class-ExternalWeatherDataAdapter)
[bookmark: _GoBack]




