[bookmark: _GoBack]Week 3 				 Lab 3		 Name:
Raspberry Pi/GERTBOARD

Objective
Introduce the student to the GERTBOARD input/output interface for the Raspberry Pi. The purpose of the lab is to allow students to get experience on how a computer can interact with simple peripheral devices, such as switches and light-emitting diodes (LEDs). The student will gain experience making software changes, to make hardware perform in a desired fashion.
Parts Needed
· Raspberry Pi version B+
· GERTBOARD
Introduction
Computers are designed to process data from external input devices such as keyboards, mice, switches, lights, scanners, and sensors. Computers control various output devices such as monitors, printers, LCD displays, motors, and solenoids.
Procedure Part 1
1. Connect the GERTBOARD to the Raspberry Pi.
2. Connect the computer monitor, mouse, and keyboard to the Raspberry Pi.
3. On the GERTBOARD make the following connections.
Place small black jumpers on 74244 driver outputs B1–B8.
Connect two long jumpers from GP25 to B1 and GP22 to B2.
4. Plug in power to the Raspberry Pi.
5. After the Pi boots up, key in username pi, and password raspberry.
6. At the command prompt, key in startx.
7. Double click LXTerminal.
8. Open Python v. 2.7.
9. The Python Shell will appear.
10. On the top menu, click FILE, NEW WINDOW.
11. Key in the program below. The Raspberry Pi will read the condition of switch S1 on the GERTBOARD. If the switch is pressed, a Logic 0 is sent to GPIO pin 25. If the switch is untouched, a Logic 1 goes to pin 25. A message is sent to the computer monitor indicating the state of the switch. The program will pause asking if the operator wants to continue checking the status of the switch. Type y for YES or n for NO (program will terminate).

[image:]
[image:]

12. Hit F5 to compile and check for syntax errors, when the system asks if it is OK TO SAVE, save the file as YourNameWk3part1.py in /home/pi directory.
13. The Python Shell should indicate “RUNTIME ERROR: NO ACCESS TO /DEV/MEM. TRY RUNNING AS ROOT.” If this is the only error and no syntax issues occur, you are ready to run the program.
14. On the Raspberry Pi desktop, launch LXTerminal.
15. At the command prompt key in: sudo python YourNameWk3part1.py

16. If the switch is not pressed, the message on the screen will display:

Pin 25 is a logic 1.
Continue checking pin 25? 	y or n
On the GERTBOARD, LED D2 should be on, LED D1 will be on.
17. Press and hold S1 on the GERTBOARD, on the keyboard, key in y and press the enter key. While S1 is pressed, D2 LED will be off, LED D1 will be off, and the message on the screen will be
“Pin 25 is a logic 0”.
Continue checking pin 25? 	y or n

Instructor signoff ____________________________

18. Hold the CTRL key and press c to terminate the program.

19. Move the long jumpers that are connected to (B2/GP22) to (B3/GP23) and (B1/GP25) to (B2/GP24). Now the S2 switch (middle switch) will be monitored for a key depression. The LEDs to observe will be D2 and D3.

20. Modify the program to initialize GP24 for input using internal pull-up resistors and GP23 for output. Change the print instruction so the program will display the following.
“Pin 24 is a logic (0 or 1 state)”
Continue checking pin 24? 	y or n

21. Hit F5 to compile the program.
22. Go to LXTerminal, hit the up arrow to retrieve the previous command and hit the ENTER key.

Instructor signoff ____________________________

Part 2
23. From the Python Shell upper menu, select FILE/NEW WINDOW.
24. Key in the program below.
[image:]

25. Connect two long jumpers from GP25 to B1 and GP17 to B2. These connections will connect switch S1 to GPIO pin 25 (input) and LED D2 to GPIO pin 17 (output).

26. Use the same procedure in Part 1 to save the file as YourNameWk3part2.py

27. If S1 is pressed on the GERTBOARD, LED D2 will flash ON and OFF at 1- second intervals. If the button is released, the output will be OFF.

28. Test the program to make sure it works. On the keyboard, hit CTRL-c to terminate the program.

29. Change the long jumpers to the following.
(B1/GP25) to (B3/GP24)—switch S3 connects to GPIO pin 24, input.
(B2/GP17) to (B1/GP22)—LED D1 connects to GPIO pin 22, output.

Modify the Python program to reinitialize the GPIO port pins so when the program runs, D1 will flash ON/OFF when S3 is pressed. Change the delay time to 500msec [replace sleep (1) with sleep(.5)].

30. Go to LXTerminal and run the Python program to verify the software/hardware modification is functional. Hit CTRL-c to terminate the program.

Submission Instructions
Connect Ethernet cable to the Raspberry Pi. Go to Desktop, open Web browser. In the address area, type http://devryu.net. Put in eCollege username and password. Open course. Go to Dropbox, attach your Python Files, then Submit. On a PC, complete Lab 3 datasheets and save as FirstNameLastNameWeek#Lab.docx and submit to the Dropbox.
Type sudo shutdown –h now, hit the ENTER key. Disconnect power from Raspberry Pi.

Week 3 – Lab 3	Page 1
image2.png
$The WEEK 3 lab involves a simple introduction to the GERTSOARD.
$The goal is to monitor GPIO input pin 25 for switch closure.
$If the switch is closed, turn off GPIO output pin 22.

import RP1.GPIO as GPIO §load module to access the 1/0 port of the Raspberry Pi
GPIO.setmode (GPIO.BCM) #Use BCM pin numbering for the GPIO

#Initialize pin 25 as an input using an internal pull up resistor,
#this will guarantee the GPIO input is a Logic 1 if the switch is OPEN and no voltage is present from the switch
GPIO.setup(25, GPIO.IN, pull up down = GPIO.PUD_UP)

#Initialize pin 22 as an output
GPIO0.setup (22, GPIO.OUT)

ey
while 1:

£ GPIO.input (25) #Read the state of pin 25

GPIO.output (22, False) #If the switch is pressed (Logic 0)
#$output a Logic 0 to pin 22

print "Pin 25 is a logic 0" #Print out message to screen

else:

GPIO.output (22, True) #Read the state of pin 25
print "Pin 25 is a logic 17 #If the switch is not pressed (Logic 1)
#send Logic 1 to pin 22, print message

check = raw_input (’Continue checking pin 25?7 y or n
it check == 'y’
continue
c1if check
break

image3.png
except KeyboardInterrup: 4 trap a CTRL+C keyboard interrupt,
#exit program

GPIO.cleanup () 4 clean up GPIO ports on CTRL+C

finally: $If program exits for any reason, GPIO will clean up, the nature of the
#erzor will display.
GPIO.cleanup ()

image4.png
7% *Week-3-GPIO-input1SecFlash,py - C:\Users\Administrator\Desktop\COURSE DEVELOPMENT 109-274\ECT274\LABS\GPIO\Week-3-GPIO-inputlSecFlashpy* o e S

Fle Edt Format Run Options Windows Help
#leck 3 Lab using cthe GERTBOARD -l

4#The purpose of this lab is to turn a logic bit on, delay one second
#and turn it off for ome second, if a switch is closed

from time import sleep $load delay module "SLEEP™
import RP1i.GPIO as GPIO fload module to access the GPIO port
GPIO.setmode (GPI0.BCHM) #Set GPIO pin numbering to BCM

GPIO.setup(25, GPIO.IN, pull up_down = GPIO.PUD UP) #Initialize pin 25 as an input using an internal pull up resistor
GPIO.setup (17, GPIO.OUT) #Initialize pin 17 as OUTPUT

def flash (): #Function to turn pin 17 ON/OFF
GPIO.output (17, False) #Turn pin 17 OFF
sleep (1) #Wait 1 second
GPIO.output (17, True) #Turn pin 17 ON

sleep(1) #Wait 1 second
try:
while 1:
if GPIO.input(25) == 1: $Read the state of pin 25
GPIO.output (17, False) $If switch is not pressed, turn off
#pin 17
e1if GPIO.imput (25)
flasn() #If switch is pressed, call flash function
except KeyboardInterrupt: 4 trap a CTRL+C keyboard interrupt,
#exit program
GPIO.cleanup () # clean up GPIO ports on CTRL+C

#1f program exits for any reason, GPIO will clean up, the nature of the
ferror will display.
GPIO.cleanup ()

image5.emf
START

INITIALIZE PIN 25

INPUT AND PIN 17

OUTPUT

Load delay module

"SLEEP"

Load module to

access the GPIO port

READ PIN 25

Is switch pressed

(Logic 0?)

Call FLASH

function

SEND LOGIC

0 to PIN 17

FLASH ()

SEND LOGIC

0 TO PIN 17

SEND LOGIC

1 TO PIN 17

return

1 SECOND DELAY

1 SECOND DELAY

1

1

1

YES

NO

Flow chart to flash a bit ON

and OFF if a switch is pressed

CTRL-C from

keyboard

END PROGRAM

oleObject2.bin
�

�

�

�

�

�

START

INITIALIZE PIN 25 INPUT AND PIN 17 OUTPUT

Load delay module "SLEEP"

Load module to access the GPIO port

READ PIN 25

Is switch pressed
(Logic 0?)

Call FLASH function

SEND LOGIC 0 to PIN 17

FLASH ()

SEND LOGIC 0 TO PIN 17

SEND LOGIC 1 TO PIN 17

return

1 SECOND DELAY

1 SECOND DELAY

1

1

1

NO

YES

Flow chart to flash a bit ON and OFF if a switch is pressed

CTRL-C from keyboard

END PROGRAM

image1.emf
START

INITIALIZE I/O

PORTS

READ

SWITCH

BUTTON

PUSHED FOR

LOGIC 0

SEND A

LOGIC 1 TO

LED

1

SEND LOGIC

0 TO LED

SEND LOGIC

0 MESSAGE

TO DISPLAY

SEND LOGIC

1 MESSAGE

TO DISPLAY

1

1

SEND

MESSAGE TO

DISPLAY DO

YOU WANT

TO KEEP

CHECKING

THE

SWITCH?

WAIT FOR Y

OR N FROM

KEYBOARD

KEYBOARD

VALUE Y FOR

YES?

2

2

END PROGRAM

YES

NO

YES

NO

KEYBOARD

VALUE N FOR

NO?

NO

YES

CTRL –C

INPUT FROM

KEYBOARD

FLOWCHART OF THE

PROGRAM TO READ A

SWITCH AND SEND AN

OUTPUT

oleObject1.bin
�

�

�

�

�

START

INITIALIZE I/O PORTS

READ SWITCH

BUTTON PUSHED FOR LOGIC 0

SEND A LOGIC 1 TO LED

SEND MESSAGE TO DISPLAY DO YOU WANT TO KEEP CHECKING THE SWITCH?

1

SEND LOGIC 0 TO LED

SEND LOGIC 0 MESSAGE TO DISPLAY

SEND LOGIC 1 MESSAGE TO DISPLAY

1

1

WAIT FOR Y OR N FROM KEYBOARD

KEYBOARD VALUE Y FOR YES?

2

2

END PROGRAM

KEYBOARD VALUE N FOR NO?

YES

NO

YES

NO

NO

YES

CTRL – C INPUT FROM KEYBOARD

FLOWCHART OF THE PROGRAM TO READ A SWITCH AND SEND AN OUTPUT

