

IT 145 Module Two Assignment Guidelines and Rubric

Overview: This assignment will allow you to use pseudocode to implement the program to see the value in planning first, coding later. While coding is the
glamorous part of the job, software development is a process with many steps. The program itself will focus on operators to complete an equation.

Prompt: Before completing this assignment, be sure to review the Module Two resources. Use the Guide to Pseudocode document to write out the pseudocode
for the given problem:

Imagine that you are a merchant and need to keep better tabs on your merchandise to know when to reorder supplies. First, write out pseudocode, and then
create a program to help you by accomplishing the following tasks:

 Use command line interface to ask the user to input the following. (You will need to convert this from a string to an integer.)
○ How many apples are on hand
○ How many apples should be in stock
○ How many oranges are on hand
○ How many oranges should be in stock

 Perform an operation to determine how many of each item should be ordered to maintain the stock.

 Use command line interface to output the number of apples and oranges that need to be ordered.

Once you have the program laid out, build it by creating a functional program. Use your pseudocode as a guide. Be sure to remember the following important
items:

 Follow the style guidelines found in ZyBooks as you develop.

 Use commenting to describe the code.

 Practice debugging if you encounter errors.

 Ensure your program performs its intended function.

Specifically, the following critical elements must be addressed:

I. Documentation: Pseudocode: Break down the problem statement into programming terms through creation of pseudocode following the guidelines
provided in the course.

II. Functioning Code: Produce fully functioning code (a code that produces no errors) that aligns with the accompanying annotations.
III. Code Results: Results are properly generated.

A. Code results generate accurate output.
B. Code results produce results that are streamlined, efficient, and error free.

http://snhu-media.snhu.edu/files/course_repository/undergraduate/it/it145/it145_guide_to_pseudocode.pdf

IV. Comments: All code should be well-commented. This is a practiced art that requires striking a balance between commenting everything, which adds a
great deal of unneeded noise to the code, and commenting nothing.

A. Explain the purpose of lines or sections of your code, detailing the approach and method the programmer took to achieve a specific task in the
code.

V. Style and Structure: Part of the lesson to be learned in this course is how to write code that is clearly readable and formatted in an organized manner.
A. Develop logically organized code that can be modified and maintained.
B. Utilize proper syntax, style, and language conventions and best practices.

Guidelines for Submission: Submit your pseudocode as a DOC or DOCX file. Submit the program as a JAVA file.

Instructor Feedback: This activity uses an integrated rubric in Blackboard. Students can view instructor feedback in the Grade Center. For more information,
review these instructions.

Rubric
Critical Elements Exemplary (100%) Proficient (85%) Needs Improvement (55%) Not Evident (0%) Value

Documentation:
Pseudocode

Meets “Proficient” criteria and
demonstrates thorough
understanding of the creation
of pseudocode

Breaks down the problem
statement into programming
terms through the creation of
pseudocode

Breaks down the problem
statement into programming
terms through the creation of
pseudocode, but pseudocode
contains inaccuracies or
explanation is illogical or
incomplete

Does not break down the
problem statement into
programming terms through
the creation of pseudocode

10

Functioning Code Produces fully functioning code
(a code that produces no
errors) that aligns with the
accompanying annotations

 Produces partially functioning
code (a code that produces
almost no errors) that partially
aligns with the accompanying
annotations

Does not produce functioning
code

20

Code Results:
Accurate Output

Meets “Proficient” criteria and
the code is capable of
producing accurate results
beyond the specifications of
the given problem

Generates code results with
accurate output

Generates code with incorrect
results for the given problem

Does not produce results for
the given problem

15

 Code Results:
Efficiency

Meets “Proficient” criteria and
includes sophisticated
techniques such as error
handling or reference to user-
created functions

Produces code results that are
streamlined, efficient, and
error free

Produces results that are
minimally inefficient (e.g.,
multiple minor occurrences of
convoluted code; alternative
code element would achieve
results in a simpler manner)

Does not produce code results
that are streamlined, efficient,
and error free

20

http://snhu-media.snhu.edu/files/production_documentation/formatting/rubric_feedback_instructions_student.pdf

Comments:
Explanation of

Purpose

Meets “Proficient” criteria and
clarity of annotations facilitates
code navigation for a varied
audience; code is written in a
concise manner

Explains the purpose of lines or
sections of the code, detailing
the approach and method the
programmer took to achieve a
specific task in the code

Explains the purpose of lines or
sections of the code, detailing
the approach and method the
programmer took to achieve a
specific task in the code, but
explanation has inaccurate
and/or missing details

Does not explain the purpose
of lines or sections of the code

20

Style and Structure:
Logically Organized

Code

Meets “Proficient” criteria and
demonstrates deliberate
attention to spacing,
whitespace, and variable
naming

Develops logically organized
code that can be modified and
maintained

Develops logically organized
code that can be modified and
maintained but with portions
that are not logically organized

Does not develop logically
organized code that can be
modified and maintained

5

Style and Structure:
Syntax

Meets “Proficient” criteria and
demonstrates an
understanding of why certain
techniques are considered best
practices

Utilizes proper syntax, style,
and language conventions and
best practices

Utilizes proper syntax, style,
and language conventions and
best practices, but with some
errors

Does not utilize proper syntax,
style, and language
conventions and best practices

10

Total 100%

