
1

Project 2

This project involves writing a program that implements an ATM machine. The interface to the

program should be a Java GUI that looks similar to the following:

The program should consist of three classes.

1. The first class should define the GUI. In addition to the main method and a constructor to

build the GUI, event handlers will be needed to handle each of the four buttons shown

above. When the Withdraw button is clicked, several checks must be made. The first

check is to ensure the value in the text field is numeric. Next a check must be made to

ensure the amount is in increments of $20. At that point an attempt to withdraw the funds

is made from the account selected by the radio buttons. The attempt might result in an

exception being thrown for insufficient funds, If any of those three errors occur a

JOptionPane window should be displayed explaining the error. Otherwise a window

should be displayed confirming that the withdrawal has succeeded. When the Deposit

button is clicked the only necessary check is to ensure that the amount input in the

textfield is numeric. Clicking the Transfer button signifies transferring funds to the

selected account from the other account. The checks needed are to confirm that the

amount supplied is numeric and that there are sufficient funds in the account from which

the funds are being transferred. Clicking the Balance button will cause a JOptionPane

window to be displayed showing the current balance in the selected account. The main

class must contain two Account objects, one for the checking account and another for the

savings account.

2. The second class is Account. It must have a constructor plus a method that corresponds

to each of the four buttons in the GUI. It must also incorporate logic to deduct a service

charge of $1.50 when more than four total withdrawals are made from either account.

Note that this means, for example, if two withdrawals are made from the checking and

two from the savings, any withdrawal from either account thereafter incurs the service

charge. The method that performs the withdrawals must throw an InsufficientFunds

exception whenever an attempt is made to withdraw more funds than are available in the

2

account. Note that when service charges apply, there must also be sufficient funds to pay

for that charge.

3. The third class is InsufficientFunds, which is a user defined checked exception.

The google recommended Java style guide, provided as link in the week 2 content, should be used to

format and document your code. Specifically, the following style guide attributes should be addressed:

 Header comments include filename, author, date and brief purpose of the program.

 In-line comments used to describe major functionality of the code.

 Meaningful variable names and prompts applied.

 Class names are written in UpperCamelCase.

 Variable names are written in lowerCamelCase.

 Constant names are in written in All Capitals.

 Braces use K&R style.

In addition the following design constraints should be followed:

 Declare all instance variables private

 Avoid the duplication of code

Test cases should be supplied in the form of table with columns indicating the input values, expected

output, actual output and if the test case passed or failed. This table should contain 4 columns with

appropriate labels and a row for each test case. Note that the actual output should be the actual results

you receive when running your program and applying the input for the test record. Be sure to select

enough different scenarios to completely test the program.

Submission requirements

Deliverables include all Java files (.java) and a single word (or PDF) document. The Java files should be

named appropriately for your applications. The word (or PDF) document should include screen captures

showing the successful compiling and running of each of the test cases. Each screen capture should be

properly labeled clearly indicated what the screen capture represents. The test cases table should be

included in your word or PDF document and properly labeled as well.

Submit your files to the Project 2 assignment area no later than the due date listed in your LEO classroom.

You should include your name and P2 in your word (or PDF) file submitted (e.g.

firstnamelastnameP2.docx or firstnamelastnameP2.pdf).

3

Grading Rubric:

The following grading rubric will be used to determine your grade:

Attribute Meets Does not meet

GUI Class 35 points

Defines the GUI.

Contains the main method and
a constructor to build the GUI.

Contains event handlers to
handle each of the four buttons.

Contains Withdrawal checks to
ensure the value in the text field
is numeric.

Contains Withdrawal checks to
ensure the amount is in
increments of $20.

Provides ability to attempt to
withdraw the funds is made
from the account selected by
the radio buttons.

An exception is thrown for
insufficient funds, or if value is
not numeric or is value is not in
$20 increment using a
JOptionPane window explaining
the error.

Upon successful withdrawal, a
window is displayed confirming
that the withdrawal has
succeeded.

Provides ability to attempt
Deposit when Deposit button is
clicked.

0 points

Does not define the GUI.

Does not contain the main
method and a constructor to
build the GUI.

Does not contain event
handlers to handle each of the
four buttons.

Does not contain Withdrawal
checks to ensure the value in
the text field is numeric.

Does not contain Withdrawal
checks to ensure the amount is
in increments of $20.

Does not provide ability to
attempt to withdraw the funds
is made from the account
selected by the radio buttons.

An exception is not thrown for
insufficient funds, or if value is
not numeric or is value is not in
$20 increment using a
JOptionPane window explaining
the error.

Upon successful withdrawal, a
window is not displayed
confirming that the withdrawal
has succeeded.

Does not provide ability to
attempt Deposit when Deposit
button is clicked.

4

Contains Deposit checks to
ensure the value in the text field
is numeric.

 Contains Transfer button
functionality providing
transferring funds to the
selected account from the other
account.

Contains transfer checks to
confirm that the amount
supplied is numeric and that
there are sufficient funds in the
account from which the funds
are being transferred.

Contains a Balance button will
cause a JOptionPane window to
be displayed showing the
current balance in the selected
account.

The main class contains two
Account objects, one for the
checking account and another
for the savings account.

Does not contain Deposit
checks to ensure the value in
the text field is numeric.

 Does not contain Transfer
button functionality providing
transferring funds to the
selected account from the other
account.

Does not contain transfer
checks to confirm that the
amount supplied is numeric and
that there are sufficient funds in
the account from which the
funds are being transferred.

Does not contain a Balance
button will cause a JOptionPane
window to be displayed
showing the current balance in
the selected account.

The main class does not contain
two Account objects, one for
the checking account and
another for the savings account.

Account class 25 points

Contains a constructor plus a
method that corresponds to
each of the four buttons in the
GUI.

Incorporates logic to deduct a
service charge of $1.50 when
more than four total
withdrawals are made from
either account.

The method that performs the
withdrawals throws an
InsufficientFunds exception
whenever an attempt is made

0 points

Does not contain a constructor
plus a method that corresponds
to each of the four buttons in
the GUI.

Does not incorporate logic to
deduct a service charge of $1.50
when more than four total
withdrawals are made from
either account.

The method that performs the
withdrawals does not throws an
InsufficientFunds exception
whenever an attempt is made

5

to withdraw more funds than
are available in the account.

Checks that there must be
sufficient funds to pay for
service charge.

to withdraw more funds than
are available in the account.

Does not check that there must
be sufficient funds to pay for
service charge.

InsufficientFundsException
Class

20 points

Is a user defined checked
exception class.

Handles all user-defined
exceptions.

0 points

Is not a user defined checked
exception class.

Does not handle all user-
defined exceptions.

Test Cases 10 points

Test cases are supplied in the
form of table with columns
indicating the input values,
expected output, actual output
and if the test case passed or
failed.

Enough scenarios selected to
completely test the program.

Test cases were included in the
supporting word or PDF
documentation.

0 points

No test cases were provided.

Documentation and Style guide 10 points

Screen captures were provided
and labeled for compiling your
code, and running each of your
test cases.

Header comments include
filename, author, date and brief
purpose of the program.

In-line comments used to
describe major functionality of
the code.

Meaningful variable names and
prompts applied.

0 points

No documentation included.

Java style guide was not used to
prepare the Java code.

All instance variables not
declared private.

Duplication of code was not
avoided.

6

Class names are written in
UpperCamelCase.

Variable names are written in
lowerCamelCase.

Constant names are in written
in All Capitals.

Braces use K&R style.

Declare all instance variables
private.

Avoids the duplication of code.

