Operating systems Theory assignment #1 COMP346

Issue date : June 27 2017 Due date : July 11 2017
Instructor : Kerly Titus

Question 1. Introduction.

1.

(i) Explain the reason why a system call must be implemented in the kernel of the
operating system (i.e. in system mode).

(i) Some early CPUs (e.g. INTEL 8086) did not implement a mode bit so the
operating system and the user applications execute in the same mode of operation.
Explain, if possible, how the system resources could be protected in such architecture.

(1) Explain how a multitasking OS protects the CPU from faulty running programs?
(if) Explain a problem that could occur if that CPU protection mechanism is not
implemented.

. (1) Throughput is defined as the amount of work done per unit time. “The degree of

multiprogramming in a computer system has direct influence on the throughput of the
system”. Explain with an example.

(i) “Multitasking (i.e. time sharing) is a type of multiprogramming that is useful for
interactive systems”. Explain.

Question 2. Process management.

4.

5.

(i) What is the main difference between user-level threads and kernel-supported
threads?

(it) For a client application in a client-server system would you use user-level threads
or kernel-supported threads? Explain.

(iii) For a server application in a client-server system would you use user-level threads
or kernel-supported threads? Explain.

(i)Explain each step that is performed by the dispatcher during a context switch
between two processes.

(ii) Explain what would be different (if any) if the context switch occurs between two
threads of the same controlling process.

Suppose that an operating system distinguishes the time that a process or thread is
running in user mode and the time that code is executed in system mode on behalf of
that process or thread. Modify the following process state diagram to reflect the user
and system running modes.

Computer Science and Software Engineering Page 1 of 2



Operating systems Theory assignment #1 COMP346

ngw admitied exit terminated

interrupt

Computer Science and Software Engineering Page 2 of 2



