
APCO/IASC 1P01 – Lab 9 – CSS

This lab is an extension of Lab 8. If you completed that lab and followed instructions carefully, this week could
end up being atypically easy.

Tasks:
The requirements of Lab 9 are as follows:

• All of the requirements of Lab 8 (refer to that lab for details)
• Add some CSS

Beyond that, how much time you spend on this is strictly a matter of how much practice you'd like.

Styling:
First off, let's look at the table tag that we skipped last week.
Assuming we're building on what we wrote last week, let's try temporarily putting a table immediately before
the first paragraph:
<table border="1">

<tr>
<th>Likes</th><th>Dislikes</th><th>Neutral</th>

</tr>
<tr>

<td>Apples</td><td>Pears</td>
</tr>
<tr>

<td>Oregano</td><td>Organelles</td><td>Origami</td>
</tr>

</table>

which gives us:

There are a few new things to explain here:
• The table tag creates a table

◦ In this context, the table's effectively a container (the outer box only)
• A table contains some number of rows (tr)
• Each row contains either table data (td) or table header (th) cells
• The border attribute is used to tell it to include outlines

◦ This is now deprecated; we'll be looking at a better replacement

What happens if we take out border="1"?

It's still tabular; it's simply missing the border. Instead of relying on HTML, which is supposed to designate
structure, let's try styling it!
Try using this for the first half of the document:
<html>
<head>

<title>Bad Ideas</title>
<style>

table {
border: 1px solid black;

} /* We now start and end comments differently. */
</style>

</head>
<body><!-- Student A Studentson, 9999999 -->
<header>

Broccoli University
<nav>

Main
Genetic Engineering/Pastry Program
Developying Skynet on the Cheap

</nav>

</header>
Why not to Is this pointless?
Some value Why not?
<table>

<tr>
<th>Likes</th><th>Dislikes</th><th>Neutral</th>

</tr>
<tr>

<td>Apples</td><td>Pears</td>
</tr>
<tr>

<td>Oregano</td><td>Organelles</td><td>Origami</td>
</tr>

</table>
<p>

There is no established correlation between good ideas and actually making
money. Novelty is a reasonable selling point. So go ahead, and snap
up all of those ideas everyone else is <u>too smart</u> to use, and make them your own!

</p>
…

What does it look like now?

This isn't what we wanted, but it's enough to explain what's going on.
• We can use the style tag within the document's head to define new styling rules

◦ This is what we call an embedded stylesheet, because it's a listing of style stuck within the document
• A rule has three parts:

◦ A selector – to let you know to which elements it applies
◦ Properties – aspects of the elements' styling you wish to change
◦ Values – what you wish to set those properties to
◦ In this case, the rule selects all table tags, and assigns the values of 1px solid black to it (this is

actually shorthand for setting black to the border-color property, etc, but that doesn't matter here)
◦ Note that you need a semicolon to terminate each list of values (before starting the next property),

and property/value pairs are enclosed within braces

So, obvious question: how do we add the border to the th and td cells? Do we just add additional rules?
We could. That would work. But it would be overkill.

What we really want to do is assign the same property-value tuple to multiple different tags, right?
That means we need a wider selector.

• We can use the comma (,) to combine our selectors
◦ e.g. table, th, td means the corresponding rule applies to table or th or td

So let's try that:
table, th, td {

border: 1px solid black;
} /* We now start and end comments differently. */

This displays the table correctly. However we can have more fun with it this time.
• We could change black to red, or blue
• Instead of solid, we could try dotted or dashed or double
• We could pick a different thickness, other than 1 pixel wide

Still, this was just to introduce the concept of a stylesheet. Feel free to delete the table and its corresponding
style, or leave it in. I'll be deleting mine before continuing.

Remember that the paragraphs, articles, and sections all define their own blocks. But actually seeing
proof of that isn't easy with HTML alone. Let's try adding some style:
p {

background-color: springgreen;
}
article {

background-color: turquoise;
}
section {

background-color: lavender;
}

What's the result?

Disclaimer: I realize this is a terrible colour scheme. Feel free to pick other names from here:
https://www.w3schools.com/cssref/css_colors.asp

While we're at it, maybe we could set a few more properties:
p {

background-color: springgreen;
margin-left: 16pt;

}
article {

background-color: turquoise;
padding: 16pt;
border-radius: 8pt;

}
section {

background-color: lavender;
border-radius: 4pt;
padding: 8pt;

}
h2 {

margin: 4pt 12pt;
}

• The padding is the space requested within a block before the contents start
• The margin is the space requested outside the block
• The border-radius property can add rounded corners (larger number → rounder corners)
• Many properties are shorthand for more complicated collections of properties

◦ margin with a single number is shorthand for margin-top, margin-bottom, margin-left, margin-right
▪ Of course, this also applies to padding, etc.

◦ If you specify two numbers, the first is applied to -top and -bottom; the second to -left and -right

https://www.w3schools.com/cssref/css_colors.asp

This is probably a good time to remind you that you can right-click on any element, and inspect it within your
browser. The CSS portion should be on the right.

Before we move on, just for ha-ha's, let's also change the colour of the bulleted lists:
ul { color: rgb(150,40,255); }

• It didn't really matter whether we styled the unordered lists (ul) or the list items (li) themselves
◦ The list items will inherit it from the list anyway

• Note that this is a different way to specify colour:
◦ First choose red, then green, then blue
◦ No intensity in a colour channel is reflected by 0; maximum intensity by 255
◦ If all three channels are the same, you get a shade of grey

▪ By this definition, black (0,0,0) and white (255,255,255) are considered greys

Suppose I want to make some text be very special. Yes, we have emphasis (em) and strong (strong), but what if
we want… fancy!
There's no fancy tag in HTML, unfortunately.

Does that mean we can't designate a portion of text as being “fancy”? Of course not!

Consider the following:
<p class="fancy">

There is no established correlation between good ideas and actually making
money. Novelty is a reasonable selling point. So go ahead, and snap
up all of those ideas everyone else is <u>too smart</u> to use, and make them your own!

</p>

What did it do? Try saving the document and refreshing the browser to see.
I'll wait.
…
Back yet?
Great! Didn't do anything, did it?
Ah, but it did!

• The class attribute is used to designate any arbitrary role or category you like
◦ You can use it to fulfill semantic meanings not covered by existing HTML tags

• You can add as many members to the same class as you like, whether block, inline, or combined
Before we add meaning to being “fancy”, I just want to make one more change:
Wonderful (terrible) ideas include:

The reason we have a span tag is to have a generic inline tag for identifying a portion of a line of text;
generally to add a class to it. Until you do that, it basically doesn't do anything at all.
Similarly, the div tag is the block-level counterpart (though this can be overridden for each, anyway).

How can we make something look “fancy”? Let's try a different font! Hmm… Junicode looks pretty fancy!
• What? You don't have Junicode? Oh, then how about Comic Sans MS? Comic Sans is pretty fancy

◦ What? You deleted Comic Sans in a fit of design-mourning rage? How about some cursive?
▪ Failing that, any sans-serif?

.fancy { font-family: "Junicode", "Comic Sans MS", cursive, sans-serif; }

Again, there's a font shorthand for combining properties. Feel free to read more here:
https://www.w3schools.com/css/css_font.asp

https://www.w3schools.com/css/css_font.asp

Note that I do have Junicode, so yours will probably look a little different.
However, the point remains: We can now designate any tag, block, or portion of text that we like as being fancy!
Neat!

(If it wasn't clear, all we need to do to select a class is to put a period before its name in the CSS selector)

Hmm. What if we wanted that first heading (“Premise”) to use the Impact font? And only that bit?
There's no need to define a class for that, right?

We have two choices. Let's briefly explore both.
<h1 style="font-family: Impact;">Premise</h1>

This approach is known as an inline style. We simply assign the style like any other attribute.
Inline styles are discouraged, in part because:

• If we want to restyle the document, we need to explicitly search out each instance
• It may conflict with styles defined at the top (not seeing both simultaneously may confuse things)
• If you ever do decide to start reusing styles, you'll want to undo it anyway

There's another solution, instead:
<h1 id="premiseh">Premise</h1>

What does that do? Nothing, directly. However, we can create a style rule specifically for that element:
#premiseh { font-family: Impact; }

There! All you do is use an octothorpe before the name of the id.
This way, we can make a single-use rule, but we can still keep all of the styling organized together.

However, on that note, what about our other files? In theory, you should have a couple more simple pages you
created last week. Oftentimes, we wish to use the same basic styling across multiple pages. We can simply copy
the rules from one embedded stylesheet into another, but that isn't really ideal. In addition to the other reasons
we covered in lecture, if we ever want to change our site's theme, we'd need to edit all of the files! That isn't
terribly efficient, is it?

We can use an external stylesheet to define rules once, and then reference that stylesheet within each document.

Within the document's head, in between the title and the style tags, try adding this:
<link rel="stylesheet" type="text/css" href="theme.css"/>

What does that do? It tells the browser to load an additional file (theme.css) so it can know additional styling.
By putting it before the style tag, we:

• Conform to best practices
• Ensure that the embedded stylesheet applies after the external sheet

◦ The external sheet is for the general (across the whole site); the embedded is for the specific (this
page). Newer definitions override older ones, so we want this page's rules to trump general ones

And, by putting them in a separate file, we make it easier for multiple web pages to all refer to the same file's
style rules.

Let's add a bit more to this sheet. First, maybe we want to always see the disclaimer.
footer { position: fixed; bottom: 0pt; left: 0pt; background-color: cyan; }

The position:fixed rule says that we wish to be able to explicitly declare the positioning of the block,
relative to the window (instead of its normal flow within the document).
Because we're manually positioning, we can set the bottom and left as our reference edges.
The background was added, because otherwise the text would be hard to read.

Within our header is a navigation bar. We might like to have the list items beside each other, but we don't want
to change all list items.
It's time to revisit our selectors:
body { background-color: aquamarine; }
footer { position: fixed; bottom: 0pt; left: 0pt; background-color: cyan; }
header { background-color: deepskyblue; }
header li { display: inline; }
li>a { color: inherit; text-decoration: none; }

• Listing two tags, separated only by a space, selects any instance of the latter tag that is a descendant of
an instance of the former
◦ Yeah, that sounds confusing. In this case, we're applying to every li that is somewhere within a

header
◦ Setting the display to inline is simply how we change it from a block tag into an inline tag

• Listing two tags, separated by a >, selects only instances of the latter that are the immediate child of an
instance of the former
◦ In this case, we're only selecting anchor tags that are immediately within list items
◦ For example, an anchor within a span, within a list item would not be selected for this rule

I'll put one final screenshot, followed by everything we've written so far, at the end. But what else can we do?
Actually, quite a lot. Much of the appearance of a 'modern' webpage comes from its CSS. We've only scratched
the surface, but by adding more and more additional rules, with more careful selectors, you can create a pretty
rich document; but still extensible, modifiable, and can share that look with additional pages.

Submission: As a reminder, assuming you finished last week's lab, all you need to do is to show your lab
demonstrator that you've added some CSS. Nothing more.

theme.css
body { background-color: aquamarine; }
footer { position: fixed; bottom: 0pt; left: 0pt; background-color: cyan; }
header { background-color: deepskyblue; }
header li { display: inline; }
li>a { color: inherit; text-decoration: none; }

main.html
<html>
<head>

<title>Bad Ideas</title>
<link rel="stylesheet" type="text/css" href="theme.css"/>
<style>

p {
background-color: springgreen;
margin-left: 16pt;

}
article {

background-color: turquoise;
padding: 16pt;
border-radius: 8pt;

}
section {

background-color: lavender;
border-radius: 4pt;
padding: 8pt;

}
h2 {

margin: 4pt 12pt;
}
ul { color: rgb(150,40,255); }
.fancy { font-family: "Junicode", "Comic Sans MS", cursive, sans-serif; }
#premiseh { font-family: Impact; }

</style>
</head>
<body><!-- Student A Studentson, 9999999 -->
<header>

Broccoli University
<nav>

Main
Genetic Engineering/Pastry Program
Developying Skynet on the Cheap

</nav>

</header>
Why not to Is this pointless?

Some value Why not?
<p class="fancy">

There is no established correlation between good ideas and actually making
money. Novelty is a reasonable selling point. So go ahead, and snap
up all of those ideas everyone else is <u>too smart</u> to use, and make them your own!

</p>
<p>

Wonderful (terrible) ideas include:
<!--ul = unordered (bulleted list)-->

ejector seats for helicopters<!--Each 'list item' is a bullet-->
solar-powered flashlights<!--Please remember the -->
research-paper autogenerators
monkey chauffeurs

<!--If we wanted a numbered list instead: ol (ordered list)-->
</p>
<h1 id="premiseh">Premise</h1>
<article>

<h2>Why They're Bad:</h2>

<section>

Each of these has a major flaw with them. For example, trying to eject through
spinning blades would be detrimental to your haircut.
Similarly, solar-powered flashlights throw off lighting angles for photography.

</section>
<h2>Does It Matter?</h2>

<section>

Identifying the problems with an idea can be very valuable. They don't
necessarily have to stop you, but you're better prepared if you can
anticipate potential issues. If you don't find them, someone else will.

</section>
</article>
<h1>Rationale</h1>
<article>

<h2>The Value of the Unwanted</h2>

<section>

Nobody will fight you over a bad patent. Nobody.
</section>
<h2>So What?</h2>

<section>

So you can repurpose them, to make good ideas! Maybe you can
ditch out the side of the helicopter and deploy gliding wings? Maybe you can
add a battery to the flashlight for the solar panel to charge?

</section>
</article>
<footer>

<small>Disclaimer: no warranty is expressed or implied for the ideas contained herein.
You are solely responsible for trying to find your own toes after implementing
these ideas.</small>
<!--br is for a line break. Use them sparingly-->
You can contact me at fakeyfakeaddress@fakeemail.com

</footer>
</body>
</html>

Additional Reading Material:
You should give w3schools a look (http://www.w3schools.com/tags/default.asp and
http://www.w3schools.com/cssref/default.asp). They have live previews of modifiable sample code.

http://www.w3schools.com/cssref/default.asp
http://www.w3schools.com/tags/default.asp

