Homework 1 - Extracting Data from a CSV file

Michael McAlpin
Instructor - COP3502 - CS-1
Summer 2017
EECS-UCF
michael.mcalpin@ucf.edu

June 1, 2017
Due on June 11, 2017 by 11:59 pm

Abstract

This assignment is based on a class of problem solved in enterprise computing; extraction, transfor-
mation, and loading. This is often referred to as ETL. The inputs will be data extracted from a leading
aviation industry data and consulting firm, GCR. (See (GCR.com for additional data.) The data is in a
well known format where each data element is separated from the previous and following data elements
by using a comma. It should be noted that this method of data manipulation is extremely common. The
explicit order of the data fields and the desired outputs are defined in the "Specifications".

1 Objectives

The objectives of this assignment are to demonstrate proficiency in file I/O, data structures, and data trans-
formation using C language resources. Specifically, you will read in data from a text file, use that data to
populate a data structure, and print that data to STDOUT by accessing the newly populated structure.

1.1 Extraction

The first part of ETL is extraction. The filename of a text file will be passed to your program via the com-
mand line. The data contained in that file is to be read into memory (i.e., extracted). Your program will be
compiled and run on Eustis using the following commands:

gcc -o etl hwletl.c
./etl inputFile

It is entirely possible that the input file either does not exist or is not where it is supposed to be. In such
an event, your program should print an error message to STDERR that indicates which file is missing, then
your program should exit safely. Use the following format for your error message (fileName should display
the actual name of the missing file):

etl ERROR: File “fileName” not found.

http://www.gcr1.com/5010web/advancedsearch.cfm

The input file is in CSV (comma separated values) format where each line contains the data for one
airport and the fields are as printed below. Note that these fields vary in size and content. Some fields may
even be empty. Also note that the data for some of the fields are a melange of types. Specifically, the FAA
Site Number and both latitude and longitude contain numbers, punctuation, and text.

For this assignment, treat all input data as character data.

Table 1: Airports Data Fields

Field Title Description Size
FAA Site Number Contains leading digits followed | Leading digits followed by a
by a decimal point and short text | decimal point and zero to two
digits and a letter
Loc ID The airport’s short name, i.e. | 4 characters
MCO for Orlando
Airport Name The airport’s full name, i.e. Or- | < 50 characters
lando International
Associated City The nearest city < 50 characters
State State 2 characters
Region FAA Region 3 characters
ADO Airline Dispatch Office 3 characters
Use Public or Private 2 characters
Latitude DD-MM-ss.ssssDirection Degrees, minutes, seconds. Di-
rection is either N,S,E or W.
Treated as a string (for now).
Longitude See Latitude above. ditto
Airport Ownership Public or Private 2 characters
Part 139 FAA Regulation No data

NPIAS Service Level

National Plan Integrated Airport
Systems Descriptor

< 50 characters

NPIAS Hub Type

Intentionally left blank

n/a

Airport Control Tower

Y/N

one character

Fuel

Fuel types available

up to 6 characters

Other Services

Collections of tag indicating IN-
STRuction, etc.

12 characters

Based Aircraft Total

Number of aircraft (may be
blank)

Integer number

Total Operations

Takeoffs/Landings/etc (may be
blank)

Integer number

1.2 Transformation

The second part of ETL is transformation. A list of comma separated values is convenient for text files, but
it is far less convenient in memory. Once the data for a single airport has been read into a buffer, you will
need to parse the buffer based on the commas between the data fields. The parsed data will then be used to
populate a structure of the type struct airPdata (i.e. the data has been transformed from CSV to a
data structure). The format of airPdata, shown below, will be defined in airPdata.h. Note that the
airPdata structure uses the same names as the input file’s Field Names (See Table [I|on page[2), though
not all of the Field Names are used.

typedef struct airPdata{

char xsiteNumber; //FAA Site Number

char xLocID; //Airport’s ‘‘Short Name’’, \textit{e.g.} MCO

char xfieldName; //Airport Name

char =xcity; //Associated City

char =*state; //State

char xlatitude; //Latitude

char *longitude; //Longitude

char controlTower;//Control Tower, this is a single character (Y/N)
} airPdata;

Remember, some of these fields will be of differing lengths for each airport. When you allocate memory
structure’s fields, you can assume that no entry will be longer than 50 characters (plus 1 character for the
terminating NULL).

1.3 Loading

Finally, the third part of ETL is loading. With the data now in an airPdata structure it can be eas-
ily accessed by functions and/or other programs (i.e., loaded). For this assignment, you will use pass the
airPdata structure to a function (PrintData (airPdata airport)) that will print the data to
STDOUT (aka the console). Before calling PrintData for the first time, make sure you print a header
line that names each column. Specifically, use the following two lines of code:

printf ("%-12s %-11s %-42s %-34s %-3s %-15s %-16s Tower\n",
"FAA Site", "Short Name", "Airport Name", "City", "ST",
"Latitude", "Longitude");

The “-” preceding each of the format specifiers left-justifies the printed values, while the numbers in-
dicate the width of the printed field. Your data should be left-justified as well and should use widths that
are identical to those in the header line. It is your choice whether you want to populate one airPdata
structure and then print it, or to populate an array of airPdata structures and then print each of them. If
you choose to populate and print one at a time, be sure to free any allocated memory before reallocating for
the same variable. If you choose to read in all of the airports before printing them, you will have an easier
time modifying your HW1 code when it comes time for HW3 and will only need to free the memory when
you are done. Again, the choice is yours. An example of what the output should look like is shown on the
next page.

FAA Site

Short Name

Airport Name

03406.
03406.
03406.
03406.
03408.
03406.
03406.
03406.
03406.
L2%A
03406.
03406.
03407.
03407.
03406.
03408.
03407.
03406.
03407.
03406.
03406.
03406.
03406.
03406.
03406.

03407

20%H
31xH
36xH
24+%H
*A

11«H
22*H
40xH
39xH

*C
33xC
15%A
09+H
18xH
4+xH
*A
21+H
1xA
29+H
113xH
14*A
38xC
34xH
3%H

2FD7
3FD5
2FL5
FD99
ORL

37FA
FD36
FL76
97FD
ISM

91FL
89FL
54FD
82FD
32FL
27FA
MCO

FD28
SFB

TEAS
26FA
01FA
12FL
OFL7
13FD

AIR ORLANDO

ARNOLD PALMER HOSPITAL
BROOKSVILLE INTL AIRWAYS- INC
DR P PHILLIPS HOSPITAL
EXECUTIVE

FLORIDA HOSPITAL

FLORIDA HOSPITAL EAST ORLANDO
HELI-PARTNERS I-DRIVE
HELICOPTERS INTL

KISSIMMEE GATEWAY

LAKE CONWAY NORTH

LAKE HIAWASSEE

LM-ETS

LOCKHEED MARTIN

MEYER

ORANGE COUNTY SHERIFF’S OFFICE
ORLANDO INTL

ORLANDO RGNL MEDICAL CENTER
ORLANDO SANFORD INTL

PREMIUM

PRINCETON HOSPITAL

RYBOLT RANCH

TIMBERLACHEN

WKMG-TV

YELVINGTON

ORLANDO
ORLANDO
ORLANDO
ORLANDO
ORLANDO
ORLANDO
ORLANDO
ORLANDO
ORLANDO
ORLANDO
ORLANDO
ORLANDO
ORLANDO
ORLANDO
ORLANDO
ORLANDO
ORLANDO
ORLANDO
ORLANDO
ORLANDO
ORLANDO
ORLANDO

Latitude

28-26-08.
28-31-21.
28-25-26.
28-25-43.
28-32-43
28-34-32.
28-32-26
27-23-04.
28-27-51.
28-17-23
28-28-45.
28-31-45.
28-22-03.
28-26-48
28-30-05.
28-30-27.
28-25-45.
28-31-31.
28-46-37.
28-23-21.
28-34-06.
28-35-21.
28-35-34.
28-35-38.
28-31-07.

0210N
0090N
0000N
0220N

.7000N

0020N

.7000N

0000N
8300N

.3000N

0140N
0100N
0000N

.4900N

0120N
0110N
8000N
0090N
1000N
0000N
0040N
9970N
0000N
7000N
0090N

Longitude

081-28-23.
081-22-49.
081-27-35.
081-28-38
081-19-58.
081-22-06.
081-16-51.
081-29-07.
081-27-35.
081-26-13.
081-22-03.
081-28-51
081-04-34.
081-27-03.
081-26-39.
081-24-48
081-18-32.
081-22-37
081-14-05.
081-29-19.
081-26-02.
081-08-39.
081-24-14.
081-25-11.
081-22-59.

2590w
2520w
oooow

.2590W

5000w
2490w
oooow
0000w
8800w
5000w
2510w

.2600W

0000w
6900w
2560w

.2540W

4000w

.2510W

7000W
0ooow
2550w
2290w
oooow
6000w
2520w

ZZzzzzZKkzZzKkzzzzzz<kzZzzz2<z2222

2 Required Functions

void printData(airPdata airport);
Description: Prints the data for a given airport, using the same format as the provided header line.
Input: A pointer to an airPdata structure.

Special Cases: If a NULL pointer is passed to this function, print an error message to STDERR and
return from the function without printing anything to STDOUT.

Returns: Nothing

3 Testing

There are several possible approaches for parsing the input data. Regardless of the approach you use, make
sure to test your code on Eustis even if it works perfectly on your machine . If your code does not compile
on Eustis you will receive a 0 for the assignment. There will be four (4) files provided for testing your code,
they are as follows.

Table 2: Test Files

Filename Description

twolines.csv | Two lines of test data, where one
line consists of lower case letters, one
unique letter per field, the other line
will consist of uppercase letters.
orlandoS.csv | Five lines of Orlando airport data.
orlando.csv | All 26 of the Orlando airports.
florida.csv All 877 of Florida’s airports.

The expected output for these test cases will also be provided. To compare your output to the expected
output you will first need to redirect STDOUT to a text file. Run your code with the following command
(substitute the actual name of the input CSV file):

./etl inputFile > output.txt
The run the following command (substitute the actual name of the expected output file):

diff output.txt expectedOutputFile
If there are any differences the relevant lines will be displayed (note that even a single extra space will cause
a difference to be detected). If nothing is displayed, then congratulations the outputs match! For each of

the four (4) test cases, your code will need to output to STDOUT text that is identical to the corresponding
expectedOutputFile. If your code crashes for a particular test case, you will not get credit for that case.

4 Grading

Scoring will be based on the following rubric:

Table 3: Grading Rubric

Deduction | Description

-100 | Code does not compile on Eustis

-100 | Code does not accept the input file-
name from the command line
- 15 | Code does not show an error message
and/or does not exit safely when there
is a file I/O problem
- 20 | crashed on twolines.csv, or output does
not match
- 20 | crashed on orlando5.csv, or output does
not match
- 20 | crashed on orlando.csv, or output does
not match
- 20 | crashed on florida.csv, or output does
not match
-5 | Missing the academic honesty affirma-
tion (See Submission Instructions)

5 Submission Instructions

The assignment shall be submitted via WebCourses. There should only be one file in the submission.

e The main source file named hwlet 1. c (The submitted file should be all lowercase, but to capitalized
version is printed here to avoid any spelling errors from misreading the filename: HW1ETL.C. Again,
your filename should be all lowercase.)

The header file airPdata.h should not be submitted. The graders will already have it. Do not rely
on a modified copy of airPdata.h, and do not hard code the airPdata structure in your main source
file. Doing so will cause your code to not compile.

Include a comment at the top of your main source file that contains the following statement (substitute
your name and NID) - “I [name] ([NID]) affirm that this program is entirely my own work and that I have
neither developed my code together with any another person, nor copied any code from any other person,
nor permitted my code to be copied or otherwise used by any other person, nor have I copied, modified, or
otherwise used program code that I have found in any external source, including but not limited to, online
sources. I acknowledge that any violation of the above terms will be treated as academic dishonesty.”

	Objectives
	Extraction
	Transformation
	Loading

	Required Functions
	Testing
	Grading
	Submission Instructions

