


# CS 151L – Summer 2017

## Programming Assignment 1

Due: Monday, June 12, 2017 at 11:59 PM

You will need to submit your program on learn for grading. The name of the file should be **cs151su17assn1.m**. Be sure to include your name and section number as comments in the m-file.

The four-sided figure shown below consists of two triangles having a common side  $a$ . The law of cosines for the top triangle states that  $a^2 = b_1^2 + c_1^2 - 2b_1c_1 \cos A_1$  and a similar equation can be written for the bottom triangle. You may also need to use the law of sines to solve this problem and for the top triangle, it is  $\frac{\sin A}{a} = \frac{\sin B_1}{b_1} = \frac{\sin C_1}{c_1}$ . In the figure,  $a$ ,  $b_1$ ,  $c_1$ ,  $b_2$ , and  $c_2$  are the dimensions of the sides and  $A_1$ ,  $A_2$ ,  $B_1$ ,  $B_2$ ,  $C_1$ , and  $C_2$  are the dimensions of the angles (as shown).



Develop a procedure for computing the length of side  $c_2$  if you are given the lengths of the other three sides and the two angles  $A_1$  and  $A_2$ .

### **A Step-by-step Procedure**

1. Assign single values to the variables representing each side of the figure. ( $b_1$  is 175 meters,  $b_2$  is 162 meters, and  $c_1$  is 117 meters).
2. Assign values to the two angles  $A_1$  and  $A_2$  where  $A_1$  is 2.25 radians and  $A_2$  is 1.68 radians.
3. Solve for side  $a$  of the top triangle using the law of cosines (you will need to use functions to take the square root and the cosine function - note that there are cosine functions that can use either radians or degrees).
4. Solve for the angle  $B_2$  (in degrees) by using the law of sines (you will need to use the arcsine and sine functions – again note that there are functions for both radians or degrees).
5. Solve for the angle  $C_2$  (in degrees) by knowing that all three angles in a triangle must add up to 180 degrees.
6. Finally, solve for the side  $c_2$  by using the law of cosines (make sure that this final answer prints to the screen for verification).
7. You should get the following **approximate** values as answers for the steps above

$$a = 265$$

$$B_2 = 37$$

$$C_2 = 46$$

$$c_2 = 192$$