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Example 10.4.4 A Matching Network

Model the matching problem of Example 10.4.1 as a network.

We first assign each edge in the graph of Figure 10.4.1 capacity 1 (see Figure 10.4.3). Next we add a
supersource a and edges of capacity 1 from a to each of 4, B, C, and D. Finally, we introduce a
supersink z and edges of capacity 1 from each of J;, b, /3, Ja, and J5 to z. We call a network such as
that of Figure 10.4.3 a matching network.

Figure 10.4.3 The matching problem (Figure 10.4.1) as a matching network.
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The next theorem relates matching networks and flows.
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The next theorem relates matching networks and flows.
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Theorem 10.4.5

Let G be a directed, bipartite graph with disjoint vertex sets V. and W in which the edges are
directed from vertices in V to vertices in W . (Any vertex in G is either in V or in W.)

(@) A flowin the matching network gives a matching in G. The vertex v € V is matched
with the vertex w € W if and only if the flow in edge (v, w) is 1.

(b) A maximal flow corresponds to a maximal matching.

(c) A flow whose value is | V| corresponds to a complete matching.

Proof

Let a (2) represent the source (sink) in the matching network, and suppose that a flow is given.
529

Suppose that the edge (v, w), ve V, we W, has flow 1. The only edge into vertex vis (a, v). This 530
edge must have flow 1; thus the flow into vertex vis 1. Since the flow out of vis also 1, the only

edge of the form (v, x) having flow 1 is (v, w). Similarly, the only edge of the form (x, w) having flow

1is (v, w). Therefore, if E is the set of edges of the form (v, w) having flow 1, the members of E have

no vertices in common; thus E is a matching for G.

Parts (b) and (c) follow from the fact that the number of vertices in V' matched is equal to the value
of the corresponding flow.

Since a maximal flow gives a maximal matching, Algorithm 10.2.4 applied to a matching network
produces a maximal matching. In practice, the implementation of Algorithm 10.2.4 can be
simplified by using the adjacency matrix of the graph (see Exercise 11).
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Q Such a problem is an example of a linear programming problem. In a linear programming
problem, we want to maximize (or minimize) a linear expression, such as 3 Faj, subject to linear
inequality and equality constraints, such as 0 < Fj; < Gjjand X;Fj; = X;Fj;. Although the simplex
algorithm is normally an efficient way to solve a general linear programming problem, network
transport problems are usually more efficiently solved using Algorithm 10.2.4. See [Hillier] for an
exposition of the simplex algorithm.

Suppose that for each edge (4 ) in a network G, G represents the cost of the flow of one unit
through edge (Z, ). Suppose that we want a maximal flow, with minimal cost

Y Y C,F,.
i

This problem, called the transportation problem, is again a linear programming problem and, as
with the maximal flow problem, a specific algorithm can be used to obtain a solution that is, in
general, more efficient than the simplex algorithm (see [Hillier]).
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