Programming II	Account: private constructor, const, readonly, static 	Week05_Lab12
This exercise you will be exploring more usage of the static keyword.
You must following the specifications exactly
The Account class
[image:]This is the front end of the application. There are 12 members.

Description of class members
Fields:
CURRENT_ACCOUNT_NUMBER – this private class variable is an int representing the unique number to be used when creating a new account. This is initialized in the static constructor. This is incremented in the instance constructor
Number – this public instance variable is a string indicating the current account number of this object reference. This must be decorated with the readonly keyword. This is set in the CreateAccount() method.A readonly field is like a consts but it is normally assigned when the program is running.
A const is a value that cannot be modified. Its value is set at declaration. i.e. When the program is compiled.

[bookmark: _GoBack]TRANSIT_NUMBER – this private int is a constant representing the branch number of all the accounts. That is initialized to 314. It is used in the CreateAccount() method to build the account number of this account.
Properties:
Balance – this property is a double that represents the current balance of this object. . This getter is public and the setter is private.
Names – this property is a list of string representing the name associated with this object. This getter is public and the setter is private.
Constructor:
There are two constructors for this class: a static and a private one
static Account() – This is the static constructor. It will be used to initialize the class variable CURRENT_ACCOUNT_NUMBER to a suitable value e.g. 100000A static constructor is used to initialise the static fields and properties. It is invoked once in the life time of a program, before ANY member is accessed. There is no access modifier i.e. public, protected or private

private Account(string number, string name, double balance) – This is a private constructor that does the following:
· The Number field and the Balance property are initialized to the values of the arguments
· The Names property is initialised to an empty list (use the new operator). And the argument is added to this collection
Methods
public void AddName(string name) – This is a public method adds the argument int0 the Names collection. It is possible to have multiple names associated with this account. This method does not return a value.
public void Deposit(double amount) – This is a public method that increases the property Balance by the amount specified by the argument. This method does not return a value.
public void Withdraw(double amount) – This is a public method that decreases the property Balance by the amount specified by the argument. This method does not return a value.The static string method Join enables you to stringify a collection. Use the following code to get string from a collection:
string.Join(", ", Names);

public override string ToString() – This is a public method overrides the corresponding method in the object class to return a stringify form of the object. To display the Names field, you will have to do some extra work because it is a list of strings []
public static Account CreateAccount(string name, double balance = 0) – This is a public static method is used to create accounts. It does the following:
· Builds an account number from the TRANSIT_NUMBER and CURRENT_ACCOUNT_NUMBER according to the template “AC-[transit number]-[current account number]. e.g. if the value of TRANSIT_NUMBER and CURRENT_ACCOUNT_NUMBER are 314 and 10005 respectively then the account number will be “AC-314-10005”. [Hint: use string.Format() method to do this.]
· It also increments the CURRENT_ACCOUNT_NUMBER field so the next object will have a unique number.
· Instantiate a new account object with the appropriate arguments.
· Returns the above object

Test Harness
Insert the following code statements in your Program.cs file:

List<Account> accounts = new List<Account>();
Random rand = new Random();

accounts.Add(Account.CreateAccount("Narendra", rand.Next(50, 500)));
accounts.Add(Account.CreateAccount("Ilia", rand.Next(50, 500)));
accounts.Add(Account.CreateAccount("Yin", rand.Next(50, 500)));
accounts.Add(Account.CreateAccount("Arben", rand.Next(50, 500)));
accounts.Add(Account.CreateAccount("Patrick", rand.Next(50, 500)));
accounts.Add(Account.CreateAccount("Joanne", rand.Next(50, 500)));
accounts.Add(Account.CreateAccount("Nicoleta", rand.Next(50, 500)));
accounts.Add(Account.CreateAccount("Mohammed", rand.Next(50, 500)));

Console.WriteLine("\nAll accounts");
foreach (Account account in accounts)
{
 Console.WriteLine(account);
}

foreach (Account account in accounts)
{
 account.Deposit(55.55);
}

Console.WriteLine("\nAfter $55.55 deposit ");
foreach (Account account in accounts)
{
 Console.WriteLine(account);
}

foreach (Account account in accounts)
{
 account.Withdraw(1.11);
 if(account.Balance > 300)
 account.AddName("(Hacked)");
}

Console.WriteLine("\nAfter $1.11 withdrawal");
foreach (Account account in accounts)
{
 Console.WriteLine(account);
}

Test Harness
Output

All accounts
[AC-314-10000] Narendra $390.00
[AC-314-10001] Ilia $228.00
[AC-314-10002] Yin $210.00
[AC-314-10003] Arben $351.00
[AC-314-10004] Patrick $224.00
[AC-314-10005] Joanne $210.00
[AC-314-10006] Nicoleta $126.00
[AC-314-10007] Mohammed $194.00

After $55.55 deposit
[AC-314-10000] Narendra $445.55
[AC-314-10001] Ilia $283.55
[AC-314-10002] Yin $265.55
[AC-314-10003] Arben $406.55
[AC-314-10004] Patrick $279.55
[AC-314-10005] Joanne $265.55
[AC-314-10006] Nicoleta $181.55
[AC-314-10007] Mohammed $249.55

After $1.11 withdrawal
[AC-314-10000] Narendra, (Hacked) $444.44
[AC-314-10001] Ilia $282.44
[AC-314-10002] Yin $264.44
[AC-314-10003] Arben, (Hacked) $405.44
[AC-314-10004] Patrick $278.44
[AC-314-10005] Joanne $264.44
[AC-314-10006] Nicoleta $180.44
[AC-314-10007] Mohammed $248.44
Press any key to continue . . .
n.k.p	Summer2017	Page 2 of 4
image1.png
(Account
Class
 Fields
©, CURRENT_ACCOUNT_ NUMBER : int

@ Number:string
B, TRANSITNUMBER: int

 Properties

& Balance { get;set }: double

K Names{ get: set}: List<string>
& Methods

@, Account)

@, Accountlstring number, sting name. [double balance = 0])
AddNamelstring name) : void

CreateAccount([sting userName = **1 [double balance = 0] : Account
Depositidouble amoun) : void

ToString(: sting

Withdraw(double amount) : void

e0000

