10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

Lab 6: Taylor Series Using Loops ENGR-114

Prelab: Before starting your m-file, read through this entire document, then create a pseu-
docode flowchart of what your program will do using the standard symbols given in Section 8.2 of
your textbook.

Lab: Create a new m-file called taylor_series.m that will contain a user-defined function. The
function will have the function name, inputs, outputs, and help command information as shown.

Underneath this, include a block comment with your name, the date, and the lab assignment
number. Underneath that, create a function that fulfills the given description.

Your function should verify that all four of its input variables have values as specified in the
description, otherwise, use the error command to tell the user which variable is invalid and give
the constraints. For example, if a user tries to call the function with x set equal to -60, this should
trigger the following command.

Your function should use a switch statement to verify the contents of the func variable.

(©2016 Dan Kruger 1 1 of



Lab 6: Taylor Series Using Loops ENGR-114

The Taylor series for our two functions are below.

x Ooxn x? 3 xt
ezzom:”“a+§+z+-~

‘ oo gt o I e
in(r) =2 (0 G i = TR T

n=0
Note that as n increases, each successive term gets smaller in absolute value. Knowing this, we
can assert that if, for instance, the 10" term in a Taylor series is 0.005, then 10 iterations of the
function will bring the sum of terms 1 through 10 to be within +/- 0.005 of the actual answer. In
other words, 10 iterations yields an answer that has an error with absolute value of 0.005 or less.

Your function shall use a while loop to compute each of these terms until the latest term’s
absolute value is equal to or less than error_ub. If/when the latest term in the Taylor series is
within this boundary, use an if /break statement to exit the while loop. Otherwise, the while
loop should keep running until it has been run max_iters times.

Note that your taylor_series function will not be computing the sum of of these terms, nor will
it be approximating the actual value of sin(zx) or e*.

You might find to be somewhat helpful. Some other recommendations:

e Example 9.6 in your textbook shows how to use an if/break statement along with a flowchart
of its algorithm.

e Start working with your m-file as a regular script (not a function) with hard coded input
values. This way you can easily run and re-run it for testing.

e Get either the e” or the sin(z) capability working before adding the other capability.

e Once both of these capabilities are working, do the input validation for all of the input
variables.

e Test your code often!

e Wait until you have verified your function works, along with its input validation, before
changing it into a function.

e Now call your function from a separate m-file. It is easier to change values and re-run this
way,v versus calling it from the command line each time.

e Verify your results. Is your algorithm actually converging on a real solution? You can add in
a variable that sums each term’s results and then compare it to the Matlab functions’ results
for the two respective operations.

Your instructor may provide some sample output file called ENGR114-Lab06-sample_output.txt.
Once you are satisfied that your file meets all the requirements, suppress all screen output, save the
file, and submit it to appropriate D2L folder.

(©2016 Dan Kruger 2 2 of



