

Page 1 of 2 Last Updated: 2017-03-28

CPS 151/Spring 2017 Homework Assignment 2 March 28, 2017

Due: April 6, 2017

Numbered List (no duplicates) Implementation using an array for storage

In this assignment you will implement a Numbered List class. A Numbered List has zero or more items of a specific type

(This is the type parameter for a generic class). Each item has a sequence number starting with 1 and going up to the size

of the list. Items can be added to the list, or deleted from the list by specifying a position. This is very similar to ArrayList

class of Java library, except that ArrayList positions start from 0. Consider the following numbered list (used to store a

grocery list):

1. Bread

2. Milk

3. Cereal

4. Juice

After the operation add(3, “Butter”) the list becomes

1. Bread

2. Milk

3. Butter

4. Cereal

5. Juice

Notice how two items now have their position numbers incremented. Now if we do the operation remove(2), the list

will become

1. Bread

2. Butter

3. Cereal

4. Juice

Once again some items change their position numbers.

No duplicates

The class should not allow duplicate values to be stored.

Add and remove by value

Like Java's ArrayList class, this class will allow adding an item without specifying a position, in which case the item gets

added as the last item. A remove operation by specifying a value will remove it from whatever position it is in. Note that

the item, if present, must be unique.

How to manage the data storage

The storage can be managed in a manner similar to the ArrayBag class.

Size of the list

This class supports the notion of size. The size is the number of values currently stored in the list. The size is

incremented for every successful add operation and is decremented for every successful remove operation. These are

the only operations that modify the size.

Error detection

Operations with invalid position numbers should cause an error message and are to be rejected. If there are n items in

the list, then valid add positions are in the range [1, n + 1] and valid remove positions are in the range [1, n] (Why?).

Remember that class clients view list positions to start at 1.

Page 2 of 2 Last Updated: 2017-03-28

A find(item) operation should be supported which returns the (logical) position number of an item if present, or returns

0 if the item is not present (can be done by a linear/sequential search). This is the complete list of operations for the

class (defined as a Java Interface)

public interface NumberedListNoDup<T> {

 boolean add(T item);
 boolean add(int position, T item);
 boolean remove(T item);

 boolean remove(int position);
 T get(int position); // return null if invalid position
 boolean set(int position, T item);

 int size();
 void clear(); // empties out the list
 int find(T item); // return 0 if item not in list

 String toString();
} // end interface

The client application

The class client would present the user with a menu to exercise all the operations. You can design this similar to the Bag

implementations.

Error detection

Many of the NumberedList methods may fail because the method is called with an invalid position (also attempt to add

a duplicate item, remove an item not in list). The boolean typed methods should return false when they fail and should

return true when they succeed.

Note: get() should return null when it is given an invalid position

 find() should return 0 when it is asked to find the position of an item not present in the list.

File organization

The client application should be in a file named userid_Asgn02.java. The NumberedList class should be in a file named

NumberedListNoDup.java. Both files should include comments to identify you.

Some partial code files are to be posted on Isidore.

The submission template for this assignment has separate pages for the client code and the class/interface code. There

is another page for pasting the screen shot(s) showing program output.

