March 17, 2017

Lecture 21
Numerical integration: Newton-Cotes quadrature rules,
Part 11

e implement Newton-Cotes quadrature rules in Matlab

e understand its approximation properties.

Implementation

For convenience in subsequent computations, we package t he Newton-Cotes weight vectors in the following
function:

function w = NCWeights(m)

% w = NCWeights(m)

%

% w is a column m-vector consisting of the weights for the m-point
% Newton-Cotes rule on the unit interval [0,1].

% m is an integer that satisfies 2 < m < 8.

if m==2

w=[11]"/2;
elseif m==3

w=[1 4 1]’/6;
elseif m==

w=[1331]'/8;
end

Notice that the weight vectors are symmetric about their middle in that

w(l:m) = w(m:1:1)

Turning now to the evaluation of Qnc(m) itself, we see from

T

m fy

Qncm) =(b—0)ZWif1=(b—G)[W1 W2 - Wi :
i=1 :

fm

that it is a scaled inner product of the weight vector w and the vector of function values. Therefore, we
obtain

APMAO0160, Spring 2017 Lecture 21

function numl = QNC(f,a,b,m)

% m-point Newton-Cotes quadrature across the interval [a b].

% f is a handle that points to a function of the form f(x) where x is a

% scalar. f must be defined on [a,b] and it must return a column vector if
% x is a column vector.

% m is an integer that satisfies 2 < m < 8.

% numl is the m-point Newton-Cotes approximation of the integral of f from
% a to b.

w = NCweights(m);

x = linspace(a,b,m)’;

fvals = f(x);

numl = (b-a)*(w*fvals);

Use m-point Newton-Cotes rules with m = 2,3,--- |8 to compute the integral
of f1(x) = e™* and f(x) = e72%% on [0, 1], record the numerical error in a table.
File: testQNC.m, QNC.m, NCWeights.m

Newton-Cotes Error

How good are the Newton-Cotes rules? Since they are based on the integration of a polynomial interpolant,
the answer clearly depends on the quality of the interpolant. Here is a result for Simpsons rule:

Theorem 1. If f(x) and its first four derivatives are continuous on [a,b], then

b — 5
C=af ax @],

b
f f(x)dx — Qney| < TSO) x€[a,b]

a

Note that if f(x) is a cubic polynomial, f(*)(x) = 0, so Simpson’s rule is exact. This is somewhat surprising
because the rule is based on the integration of a quadratic interpolant.

In general, it can be shown that

b b—a)%?
f f(X)dX = QNC(m) + Cmf(d+1)(n) ())
a m—1

where ¢, is a constant, n € [a, b], and

i m—1 if mis even,
Tl m if m is odd.

The following function can be used to return this upper bound given the interval [a, b], m, and the appropriate
derivative bound:

APMAO0160, Spring 2017

Lecture 21

elseif m==3, d=
elseif m==4, d=
elseif m==5, d=
elseif m==6, d=
elseif m==7, d=
elseif m==8, d=
else d=

end

)

35
35
)
5.
7
7
7

)

)

)

function error = QNCError(a,b,m,M)

% The error bound for the m-point Newton-Cotes rule when applied to

% the integral from a to b of a function f(x). It is assumed that

% a<=b and 2 <= m <= 8. M is an upper bound for the (d+1)-st derivative of the
% function f(x) on [a,b] where d = m if m is odd, and m-1 if m is even.

if m==2, d=1; ¢ = -1/12;

-1/90;

-3/80;
-8/945;
-275/12096;
= -9/1400;
-8183,/518400;
-8183/518400;

Cc =
C
C
C
C
C
Cc =

error = abs(¢*M*((b-a)/(m-1))"(d+2));

Use m-point Newton-Cotes rules with m = 2,3,--- |8 to compute the integral
of f(x) = sin(x) on [0,7/2], record the numerical error in a table, along with the

error bound.
File: testQNCError.m, QNCError.m

	Implementation
	Newton-Cotes Error

