[image: image1.png]You will implement the Set data structure using only functions and for simplicty, we'll only deal
with sets of integers.

As a motivation to use only functions instead of ciasses to model data structure, imagine trying
to represent a set of all positive integers. It's impossible to actually represent that using values
and memory space using classe. So instead, we will create a function that informs us if a
number is included in the set: s 3 part of the set? No. Is -1 part of the set? Yes

We wil create a function that takes an integer as an argument and retums boolean to indicate if
the integer belongs to a set. This function is called characteristic function of the set

‘The characteristic function for the set of negative numbers would look something like this:
(x: Int) = x <8




[image: image2.png]let's represent a general set by its characteristic function and for easy




[image: image3.png]syntax, let's define a type alias for this representation:
type Set = Int => Boolean
Type aliases does not add any functionality other than saves us typing. So instead of typing:

def contains(s: Int => Boolean, elem: Int): Boolean

We can wiite:

def contains(s: Set, elen: Int): Boolean

Let's finish the

plementation of the contains function:

def contains(s: Set, elen: Int): Boolean = s(elem)




1. put all the implementation in FunctionalSet file.

[image: image4.png]2. Define a function singletonSet which creates a singleton set from one integer value: the
set represents the set of the one given element. Now that we have a way to create
singleton sets, we want to define a function that allow us to build bigger sets from

smaller ones.
def singletonSet(elen: Int): Set = 727

Remember, Set is a function that takes an Int and retums a Boolean.
You can test this set by running the following code:

val set0fone = singletonSet(2) // Creates a set of single int, 2.
assert(contains(set0fOne, 2) == true)
assert(contains(set0fone, 1) == false)





[image: image5.png]3. Define the functions unionintersect, and diff, which takes two sets, and return,
respectively, their union, intersection and differences. diff(s, 1 retums a set which
contains all the elements of the set s that are not in the set t.

I/Set of all elements that are in either s or t
def union(s: Set, t: Set): Set = 777

I/Set of all elements that are in both s and t
def intersect(s: Set, t: Set): Set = 777

/15et of all elements in s but not in t
def diff(s: Set, t: Set): Set = 227

val a = singletonset(1)
val b = union(a, singletonSet(2))

val ¢ = union(singletonSet(3), singletonSet(4))
assert(contains(a, 1) == true)

assert(contains(union(b, c), 3)

rue)

assert(contains(intersect(a, b), 1) == true)
assert(contains(intersect(a, b), 2) == false)
assert(contains(diff(b, a), 2) == false)

assert(contains(diff(b, a), 2) == true)

4. Define the function filter which selects only the elements of a set that are accepted by a
given predicate p. The filtered elements are returned as a new set.

def filter(s: Set, p: Int => Boole

Usage:
val set = union(
singltonSet(1), singltonSet(2),
singltonSet(3), singltonSet(4))
val evenNunbers = filter(set, x => x % 2

assert(contains(even, 1) == false)
assert(contains(even, 2) == true)
assert(contains(even, 3) == false)

assert(contains(even, 4) == true)




[image: image6.png]5. While above functions are useful, we would like to write functions that operates on the
individual elements. Wite a function that tests whether a given predicate is true for all
elements of the set. This forall function has the following signature:

def forall(s: Set, p: Int => Boole

): Boolean

Note that there is no direct way to find which elements are in a set. contains only allows
to know whether a given element is included. Thus, if we wish to do something to all
elements of a set, then we have to iterate over all integers, testing each time whether it
is included in the set, and if so, to do something with it. We know the range of all




[image: image7.png]possible Int (32-bit integer). Here, however, we will say that an integer x has the property
-1000 <= x <= 1000 in order to limit the search space. The function will have to be
recursive.

Usage:
val set = union(
singltonSet(1), singltonSet(2),
singltonSet(3), singltonSet(4))
assert(forall(set, x => x < 10) == true)
assert(forall(set, x => x % 2 == @) == false)

. Using forall, implement a function exists which tests whether a set contains at least one
element for which the given predicate is true.

def exists(s: Set, p: Int => Boolean): Boolean = 222

. Finally, write a function map which transforms a given set into another one by applying
to each of its elements the given function.

def map(s: Set, f: Int => Int): Set = 227

Usage:
val set = union(
singltonSet(1), singltonSet(2),
singltonSet(3), singltonSet(4))
val newset = map(set, x = x * x)
assert(contains(newSet, 9) == true)
assert(contains(newSet, 16) == true)
assert(contains(newSet, 3) == false)

. The FunctionalSet.scala file contains some extra functions to help with testing and
debugging.




