// Fig. 21.4: list.h
// Template List class definition.
#ifndef LIST_H
#define LIST_H

#include <iostream>

using std::cout;

#include <new>
#include "listnode.h" // ListNode class definition

template< class NODETYPE >
class List {

public:
 List(); // constructor
 ~List(); // destructor
 void insertAtFront(const NODETYPE &);
 void insertAtBack(const NODETYPE &);
 bool removeFromFront(NODETYPE &);
 bool removeFromBack(NODETYPE &);
 bool isEmpty() const;
 void print() const;

private:
 ListNode< NODETYPE > *firstPtr; // pointer to first node
 ListNode< NODETYPE > *lastPtr; // pointer to last node

 // utility function to allocate new node
 ListNode< NODETYPE > *getNewNode(const NODETYPE &);

}; // end class List

// default constructor
template< class NODETYPE >
List< NODETYPE >::List()
 : firstPtr(0),
 lastPtr(0)
{
 // empty body

} // end List constructor

// destructor
template< class NODETYPE >
List< NODETYPE >::~List()
{
 if (!isEmpty()) { // List is not empty
// cout << "Destroying nodes ...\n";

 ListNode< NODETYPE > *currentPtr = firstPtr;
 ListNode< NODETYPE > *tempPtr;

 while (currentPtr != 0) // delete remaining nodes
 {
 tempPtr = currentPtr;

// commented out the output -- no need to print what we are deallocating
// cout << tempPtr->data << '\n';

 currentPtr = currentPtr->nextPtr;
 delete tempPtr;

 }

 }

// cout << "All nodes destroyed\n\n";

} // end List destructor

// insert node at front of list
template< class NODETYPE >
void List< NODETYPE >::insertAtFront(const NODETYPE &value)
{
 ListNode< NODETYPE > *newPtr = getNewNode(value);

 if (isEmpty()) // List is empty
 firstPtr = lastPtr = newPtr;

 else { // List is not empty
 newPtr->nextPtr = firstPtr;
 firstPtr = newPtr;

 } // end else

} // end function insertAtFront

// insert node at back of list
template< class NODETYPE >
void List< NODETYPE >::insertAtBack(const NODETYPE &value)
{
 ListNode< NODETYPE > *newPtr = getNewNode(value);

 if (isEmpty()) // List is empty
 firstPtr = lastPtr = newPtr;

 else { // List is not empty
 lastPtr->nextPtr = newPtr;
 lastPtr = newPtr;

 } // end else

} // end function insertAtBack

// delete node from front of list
template< class NODETYPE >
bool List< NODETYPE >::removeFromFront(NODETYPE &value)
{
 if (isEmpty()) // List is empty
 return false; // delete unsuccessful

 else {
 ListNode< NODETYPE > *tempPtr = firstPtr;

 if (firstPtr == lastPtr)
 firstPtr = lastPtr = 0;
 else
 firstPtr = firstPtr->nextPtr;

 value = tempPtr->data; // data being removed
 delete tempPtr;

 return true; // delete successful

 } // end else

} // end function removeFromFront

// delete node from back of list
template< class NODETYPE >
bool List< NODETYPE >::removeFromBack(NODETYPE &value)
{
 if (isEmpty())
 return false; // delete unsuccessful

 else {
 ListNode< NODETYPE > *tempPtr = lastPtr;

 if (firstPtr == lastPtr)
 firstPtr = lastPtr = 0;
 else {
 ListNode< NODETYPE > *currentPtr = firstPtr;

 // locate second-to-last element
 while (currentPtr->nextPtr != lastPtr)
 currentPtr = currentPtr->nextPtr;

 lastPtr = currentPtr;
 currentPtr->nextPtr = 0;

 } // end else

 value = tempPtr->data;
 delete tempPtr;

 return true; // delete successful

 } // end else

} // end function removeFromBack

// is List empty?
template< class NODETYPE >
bool List< NODETYPE >::isEmpty() const
{
 return firstPtr == 0;

} // end function isEmpty

// return pointer to newly allocated node
template< class NODETYPE >
ListNode< NODETYPE > *List< NODETYPE >::getNewNode(
 const NODETYPE &value)
{
 return new ListNode< NODETYPE >(value);

} // end function getNewNode

// display contents of List
template< class NODETYPE >
void List< NODETYPE >::print() const
{
 if (isEmpty()) {
 cout << "The list is empty\n\n";
 return;

 } // end if

 ListNode< NODETYPE > *currentPtr = firstPtr;

 cout << "The list is: ";

 while (currentPtr != 0) {
 cout << currentPtr->data << ' ';
 currentPtr = currentPtr->nextPtr;

 } // end while

 cout << "\n\n";

} // end function print

[bookmark: _GoBack]#endif

-
{mam

[re—
Re—

[—

et s NODETIFE >
sty

o
Ul cpsracor

S s
Aot OOETOE).
Wl er o ot NODETPE &)
P
e nronBan NODETI A)
S

e

o
et NODETYE> s, ot s
ettt i ennuii

T —
e DT gokonhat(ot NODETVPE).

T

[t

T oy
P
)

‘
ey oty
[—

Jsercr
o G avervre

