CMSC 350 Project 3

The third programming project involves writing a program that performs a sort by using a binary
search tree. The program should be able to sort lists of integers or lists of fractions in either
ascending or descending order. One set of radio buttons should be used to determine whether the
lists contain integers or fractions and a second set should be used to specify the sort order. The
main class should create the GUI shown below:

|2 Binary Search Tree Sort i m} X

Original List |~1- 821231681631421024

Sorted List 1223488101416162324

| Pperform sort

Sort Order Numeric Type
@ Ascending (@ Integer
{_) Descending () Fraction

The GUI must be generated by code that you write. You may not use a drag-and-drop GUI
generator.

Pressing the Perform Sort button should cause all the numbers in the original list to be added to a
binary search tree. Then an inorder traversal of the tree should be performed to generate the list
in sorted order and that list should then be displayed in the sorted list text field.

In addition to the main class that defines the GUL, you should have a generic class for the binary
search tree. That class needs a method to initialize the tree, one that allows a new value to be
inserted in the tree and one that performs an inorder tree traversal that generates and returns a
string that contains the tree elements in sorted order. The insert method does not need to
rebalance the tree if it becomes unbalanced. It should allow duplicate entries and it must be
written using recursion. It is not necessary to have a method to delete a node from the tree nor
one to check whether a particular value is in the tree.

The third class required for this project is one that defines fractions. It should have a constructor
that accepts a string representation of a fraction and a toString method. It must implement the
Comparable interface, which means a compareTo method is also required.

A second example of a run of this program is shown below that sorts fractions in descending
order:

| £ Binary Search Tree Sort = O X

Original List i‘lf? 3/4 372 5/8 419 7116 532 118

Sorted List 3/2 3/4 5/8 1/2 4/9 7/16 5/32 1/8

Perform Sort |
Sort Order Numeric Type
() Ascending () Integer
@ Descending (®) Fraction

Note that fractions are to be written with a slash separating the numerator and denominator with
no spaces on either side of the slash.

The only error checking required of this program is to check for nonnumeric input which
includes improperly formatted fractions such as 3/4/8. Such malformed fractions should cause
aNumberFormatExpression to be thrown. The main class must catch these exceptions and
display an appropriate error message as shown below:

| |# Binary Search Tree Sort £ O "

Original List [12 67 34 ab 151820 9 |

Message s
Sorted List
® Non numeric input
Perform Sort
Sort Order Numeric Type
(#) Ascending (&) Integer
) Descending) Fraction
You are to submit two files.

1. The firstisa . zip file that contains all the source code for the project, which includes
any code that was provided. The . zip file should contain only source code and nothing

else, which means only the . java files. If you elect to use a package the . java files
should be in a folder whose name is the package name.

2. The second is a Word document (PDF or RTF is also acceptable) that contains the
documentation for the project, which should include the following:

a. A UML class diagram that includes all classes you wrote. Do not include
predefined classes. You need only include the class name for each individual
class, not the variables or methods

b. A test plan that includes test cases that you have created indicating what aspects
of the program each one is testing

c. A short paragraph on lessons learned from the project

Grading Rubric:
Criteria Meets Does Not Meet
5 points 0 points
GUI is hand coded and matches GUI is generated by a GUI generator
required design (1) or does not match required design
()
. Includes generic class for binary Does not include generic class for
Design search tree(2) binary search tree (0)
Insert method uses recursion (1) Insert method does not use recursion
(0)
Contains Fraction class that Does not contain Fraction class that
implements Comparable (1) implements Comparable (0)
10 points 0 points
Correctly sorts all test cases in Does not correctly sort all test cases
ascending order (2) in ascending order (0)
Correctly sorts all test cases in Does not correctly sort all test cases
descending order (2) in descending order (0)
Functionality Correctly sorts all test cases involving | Does not correctly sort all test cases
integers (2) involving integers (0)
Correctly sorts all test cases involving | Does not correctly sort all test cases
fractions (2) involving fractions (0)
Generates error message for Does not generate error message for
nonnumeric input (2) nonnumeric input (0)
5 points 0 points
Test cases include integers (2) Test cases do not include integers (0)
Test Cases

Test cases include fractions (2)

Test cases do not include fractions
(0)

Test cases include nonnumeric input

(1)

Test cases do not include
nonnumeric input (0)

Documentation

5 points

0 points

Correct UML diagram included (2)

Correct UML diagram not included
(9)

Lessons learned included (2)

Lessons learned not included (0)

Comment blocks with class description
included with each class (1)

Comment blocks with class
description not included with each
class (0)

Overall Score

Meets

Does not meet

16 or more

0-15

