Term Project _ Option 1: Parser Generator
CS 2336.004
Due Date: April 30™", 2017

In this project option, you are going to implement lexical/syntax analysis using Stack.

Syntax-Directed Translations

The front end of the compiler constructs a intermediate representation of the source
program from which the back end generates the target program.

A syntax directed translation scheme is a syntax directed definition in which the net
effect of semantic actions is to print out a translation of the input to a desired output form.

Stack
Stack is a LIFO (last in first out) storage with two abstract operations : push, pop. Push
will put an item into stack at the top. Pop retrieve an item at the top of stack.

Calculations using stack
Because a stack is LIFO, any operation must access data item from the top. Stack doesn't
need 'addressing’ as it is implicit in the operators which use stack. Any expression can be
transformed into a postfix order and stack can be use to evaluate that expression without
the need for explicitly locate any variable. For example:

B+C-D==>

B C + D - (post fix)
Intermediate Code:

push rvalue B

push rvalue C

add

push rvalue D

sub

Instruction set of stack
1. Instructions fall into three category:
a. Integer arithmetic: add, mul, div ...
b. Stack manipulation:
b.i. Push v: push v onto stack
b.ii. push lvalue L: push address of data location L
b.iii. push rvalue L: push contents of data location L
b.iv. pop: throw away the value on stack top
b.v. :=: the rvalue on the top is placed in the Ivalue below it and both are
popped.
b.vi. copy: push a copy of top value on the stack.
c. Control flow:
c.i. label L: taget of jump to L
c.ii. goto L: nect instruction is taken from statement with label L
c.iii. gofalse L: pop the top value ; jump if it is O.
c.iv. gotrue L: pop the top value ; jump if it is non zero.

c.v. halt: stop execution

Steps to be followed while working on this project

1. Lexical specification:

To do lexical analysis of a C-routine. The scanner must be able to process contructs
like expressions, assignment statements, if statement, if-else-if nesting and while loop.
Ensure handling multiple files for scanning.

2. Yacc specification:

Syntax analysis of the above construct. The code can be assumed to be semantically
correct, so no semantic checks using yacc action need to be done.

3. Translation:

a. Expression:

a.l. expr > exprl ‘op’ expr2 { expr.t :=exprl.t || expr2.t || op }

a.ii. expr-> id { expr.t := id.lexeme }

Attribute lexeme of an id gives its string representation.

Attribute t of a non terminal gives its translation.

|| is the concatenation operator.
b. Assignment:

b.i. stmt -> id := expr {stmt.t ;= ‘push lvalue ’ id.lexeme || expr.t || “:=}
c. If statement:

C.i. stmt -> if expr then stmtl {out := newlabel(); stmt.t := expr.t || ‘gofalse
> out || stmtl.t || ‘label > out }
d. While statement:

d.i. stmt -> while expr then stmtl {test = newlabel(); out = newlabel();
‘label ’ test || expr.t || ‘gofalse ’ out || stmtl.t || ‘goto ’ test || ‘label * out }

Input guidelines

1. Input is a C-routine.

2. Ignore function calls.

3. The input must be completely realized by the above four translations (for example the
binary search routine)

Example Input:

intn=10;

intu=0;

intv=1;

intt;

inti=2;

while(i<=n) {
t=u+v,u=v;v=t;

}

Output:

push Ivalue n

push 10

push lvalue u
push 0
bush Ivalue v
push 1
push lvalue i
push 2

label test
push rvalue i
push rvalue n
<=

gofalse out
push lvalue t
push rvalue u
push rvalue v
+ =

push lvalue u
push rvalue v

push lvalue v
push rvalue t

goto test
label out
halt

