UNIT 2 LAB 3: CREATING SELECTION STATEMENTS

OVERVIEW

Most scripts contain at least one selection statement. These statements are often used to
determine whether certain lines of code are executed; they are also used to choose between
multiple blocks of code to execute. In this lab, you will practice constructing selection
statements using the if, elseif, and else statements and the switch statement.

OBJECTIVES

5.1. Use input and output commands.

5.3. Create selection statements.

5.4. Initialize data structures.

5.8. Use arithmetic, string, and logical operators

PREREQUISITES
Lab - Creating a Basic Script is complete

TASKS

CREATING AN INVENTORY SCRIPT

In this step, you will create an inventory script. The pseudo code for this task is shown below.

e Display a menu with options for creating an inventory.
e Prompt the user to choose an option.
e Execute code based on the option the user chose.

At this point, we are just investigating how the logic will work and will implement the actual
code for each option we create later.

CREATING A SCRIPT FROM A TEMPLATE
Use the following steps to create a new script from the previously created template:

1. Login to the DC-1 Virtual Machine.

Open PowerShell ISE.

Open the template.psl

Rename the script Get-Inventory.psl

In the SYNOPSIS section, change the text to read “This is a script to inventory computer

system hardware and software”

6. In the DESCRIPTION section, change the text to read “This script provides a menu with
a list of options for inventorying computer system hardware and software”

vk wwN

UNIT 2 LAB 3: CREATING SELECTION STATEMENTS

7. Inthe first EXAMPLE section, change the text to read

Get-Inventory.psl
This example starts the program and displays a menu with options for inventorying
computer systems.

8. Remove the second EXAMPLE section.
9. Save the file.

CREATING A MENU
In this step, we will implement the first part of our pseudo code:
e Display a menu with options for creating an inventory.

To create the menu you will create and initialize a variable to hold the menu text and the menu
choice. To do this, perform the following:

1. Inthe initialization section of your script add the following:

4

Smenu_choice =
Smenu = @”

Inventory System Menu

A - Installed Software Inventory
B - Basic Hardware Inventory
X - Exit

Il@

Note: If you copy and paste the text into the script console, you may need to add tabs to get the
correct alignment.

2. Inthe main body section, add the following:
Smenu

3. Correct any spelling and syntax errors; these are indicated by red squiggles (just like
misspelled words in Word).

4. Save the script.

UNIT 2 LAB 3: CREATING SELECTION STATEMENTS

Notes:

The @” Text “@ section is known as a here string. This is a shortened way of adding a lot of
text and formatting at once. PowerShell preserves the line feeds, carriage returns, and text
as typed. The other way to do this would require a number of escape characters and the
Write-Host cmdlet.

The only code in the main section is the Smenu statement. The Smenu on a line by itself is
the easiest way to display the contents to the screen. We could also use the Write-Host
cmdlet here.

5. Run the script. The output should be like the screen shown below.

P5 C:hvusersi\Administrator’\scripts= .%Get-Inventory.psl
Inventory System Menu

A - Installed Software Inventory
B - Basic Hardware Inventory
X - Exit

GETTING KEYBOARD INPUT

For users that are not experienced with the command line, the easiest way to get input is to
provide a menu and then allow them to select an option. In order to implement this, we need
some way to read what the user types. PowerShell provides this feature in the Read-Host
cmdlet.

In this step, we will implement the second part of our pseudo code:

e Prompt the user to choose an option.

To prompt the user to choose an option and store that option in the Smenu_choice variable,
perform the following:

1. Add the following line of code to the Main Body section on the line after the Smenu
statement:

Smenu_choice = Read-Host -Prompt “Choose a menu option”

2. Correct any errors and save the script.

UNIT 2 LAB 3: CREATING SELECTION STATEMENTS

3. Run the script. Your output should be similar to the screen below.

PS C:husersAdministratoriscripts= .\Get-Inventory.psl
Inventory 5ystem Menu

A - Installed Software Inventory
B - Basic Hardware Inventory

Choose a menu option: A

P5 C:‘users’Administratori\scripts=

4. What value is stored in Smenu_choice? In the example above, it should be “A”, but you
don’t know for sure until you look at the contents of the variable. While you are still
testing a script, it is helpful to display the contents of the variables to the console so that
you are sure what their values are.

5. Add the following statement in the Main body section of the script after the line with
the Read-Host cmdlet.

Smenu_choice

6. Save and run the script again. Your screen should be similar to the one below.

P5 C:hvusersi\Administrator’yscripts=> .%Get-Inventory.psl
Inventory System Menu

A - Installed Software Inventory
B - Basic Hardware Inventory

Choose a menu option: B
B

7. Notice the last line. This line shows you the contents of the Smenu_choice variable. This
confirms what we think it should be.

ADDING AN IF STATEMENT

In this step, you will implement the logic for your menu. If the user presses one of the keys, we
want the script to perform a specific action. At this point in the script, we will just display a
message to verify the correct code is being executed. Later, we will implement the code that
will be contained in each section.

To add an If statement to your script, perform the following:

1. Remove the line with the lone Smenu_choice variable. You no longer need this since
your test was successful.

UNIT 2 LAB 3: CREATING SELECTION STATEMENTS

2. Add the following code below the line with the Read-Host statement:

if (Smenu_choice -eq “A”)

{
Write-Host “Inventorying Installed Software...”
Write-Host “This code is not yet implemented.”
}
Elself (Smenu_choice -eq “B”)
{
Write-Host “Inventorying Installed Hardware...”
Write-Host “This code is not yet implemented.”
}
Elself (Smenu_choice -eq “X”)
{
Write-Host “This | can do.”
Write-Host “Exiting...”
}

3. Correct any errors and save the script.

4. Run and test the script using each of the options. Your screen should be similar to the
one below.

P5 C:husers’\Administrator’yscripts> .%Get-Inventory.psl
Inventory 5System Menu

A - Installed Software Inventory
B - Basic Hardware Inventory

Choose a menu option: A
Inventorying Installed Software._
This code is not yet implemented.

P5 C:husers’\Administrator’yscripts> .%Get-Inventory.psl
Inventory 5System Menu

A - Installed Software Inventory
B - Basic Hardware Inventory

Choose a menu option: B
Inventorying Installed Hardware._
This code is not yet implemented.

P5 C:husers’\Administrator’yscripts> .%Get-Inventory.psl
Inventory 5System Menu

A - Installed Software Inventory
B - Basic Hardware Inventory

Choose a menu option: X
This I can do.
Exiting..

UNIT 2 LAB 3: CREATING SELECTION STATEMENTS

NESTING AN IF STATEMENT

Often you will need to place an If statement within an If statement; this is known as nesting,
and you can do it with looping statements as well.

To nest an If statement, perform the following:
1. Inthe last if statement script block replace the existing code with the following code:

Ssure = Read-Host -Prompt “Are you sure you want to exit? (Y)”
if (Ssure -eq “Y”)

{
Write-Host “This | can do.”
Write-Host “Exiting...”
}
Else
{
Write-Host "Not Exiting :)"
}
2. The last part of your script should look like this:
Elself { Smenu_choice X
= 1
fzure Read-Host -Prompt "Are wvou sure you want to exit? (v)"
if (isure "y
- 1
wWrite-Host “This I can do.”
Write-Host “Exiting..”
1
Else
- i] .
Write-Host "Mot Exiting :)"
T
h

3. Correct any errors and save your script.

UNIT 2 LAB 3: CREATING SELECTION STATEMENTS

4. Run and test your script. You should have output similar to the screen below.

P5 C:husers’\Administrator’\scripts= .%Get-Inventory.psl
Inventory System Menu
A - Installed Software Inventory
B - Basic Hardware Inventory

Choose a menu option: X
Are yvou sure yvou want to exit? (¥): N
Mot Exiting :)

P5 C:husers’\Administrator’\scripts= .%Get-Inventory.psl
Inventory System Menu

A - Installed Software Inventory
B - Basic Hardware Inventory

Choose a menu option: X

Are yvou sure yvou want to exit? (Y): v
This I can do.

Exiting..

CREATING A SWITCH STATEMENT

We can create menu logic in our script more cleanly using a switch statement. In this step, we
will modify our previous script to use a switch statement.

1. Save the Get-Inventory.psl script as Get-Inventory-sw.psl. This will create a new script
without overwriting the previous script.

| Get-Inventory-sw.ps1 X

2. In the Get-Inventory-sw.ps1 script, right-click an et e
empty line at the bottom of the script and choose Z T ; Write-Host "Not Exiting ©)"
. 61 H
Start Snippets from the context menu. - i
3. This will give you the list of options shown below.
Choose the switch option in the drop down menu and
IStartSnippets Ctrl+] I

press enter. This will insert the code template shown <

on the right. Toggle Breakpoint 3] _-

m-eise
Description: switch statement
try-catch-finally Path: Built-in
try-finally switch ($x)
while {
Workflow (advanced value?' {
()) = {S_-in"A,B,C}{
Workflow (simple) ‘value3' §
Workflow ForEachParallel _ Default {

UNIT 2 LAB 3: CREATING SELECTION STATEMENTS

5. Inthe template perform the following:
a. Change the $x to Smenu_choice
Change valuel to A
Delete the next line.
Change value3 to B
On the next line add ‘X’ { }
In the Default script block add Write-Host “Please choose a menu option”

@ e o0 T

Move the code from the corresponding if or Elseif block to the corresponding
script block in the switch statement.
h. Delete the entire if and elseif statements.

6. Your final code should look like the screen below.
Ewitch (Smenu_choice

- At {
Write-Host “Inventorying Installed Software.”™
Write-Host “This code is not wvet implemented.”

o
= 'g" I
Write-Host “Inventorying Installed Hardware. ™
Write-Host “This code is not wet implemented.”
1
- '}({
fzure Read-Host -Prompt “Are wou sure wou want to exit? (¥)"
1T ($i=sure ")
- { . .
Write-Host “This I can do.”
Write-Host “Exiting..”
T
Elze
- i _ .
Write-Host "Mot Exiting :)"
h

Default {Write-Host "Please choose a menu option™}

7. Correct any errors and save your script.

UNIT 2 LAB 3: CREATING SELECTION STATEMENTS

8. Run and test your script. Your output should be similar to the screen below.

PS5 C:h\users‘Admimistratoryscripts= .%\Get-Inventory-sw.psl

A - Installed Software Inventory
E - Basic Hardware Inventory

Choose a menu option: A
Inventorying Installed Software._
Thiz code 15 not yet implemented.

P5s C:\users\Administrator\scripts> .‘Get-Inventory-sw.psl

A - Installed Software Inventory
E - Basic Hardware Inventory

Choose a menu optic
Inventorying Installed Hardware.
This code is not yet implemented.

P5 C:\users\Administrator‘\scripts> .‘Get-Inventory-sw.psl

A - Installed Software Inventory
B - Basic Hardware Inventory

Choose a menu option: X

Are you sure you want to ex1t? (Y): v
Thi= I can do.

Exiting._.

P5 C:\users\Administrator‘\scripts> .‘Get-Inventory-sw.psl
Inventory 5System Menu

A - Installed Software Inventory

B - Basic Hardware Inventory

Choose a menu option: C
Please chooze a menu option

LAB EVALUATION

Upload your completed scripts in the drop box for this assignment. You will be graded for this
assignment as follows:

1. 50% - Get-Inventory.ps1 script is complete and executes correctly.
2. 50% - Get-Inventory-sw.psl script is complete and executes correctly.

