CMSC 350 Project 2

The second programming project involves writing a program that accepts an arithmetic
expression of unsigned integers in postfix notation and builds the arithmetic expression tree that
represents that expression. From that tree, the corresponding fully parenthesized infix expression
should be displayed and a file should be generated that contains the three address format
instructions. This topic is discussed in the week 4 reading in module 2, section II-B. The main
class should create the GUI shown below:

| £/ Three Adddress Generator = O X

Enter Postfix Expression |3 59+23*/ |

Construct Tree |

Infix Expression ((3-(5+9))/(2*3))

The GUI must be generated by code that you write. You may not use a drag-and-drop GUI
generator.

Pressing the Construct Tree button should cause the tree to be constructed and using that tree, the
corresponding infix expression should be displayed and the three address instruction file should
be generated.

The postfix expression input should not be required to have spaces between every token. Note in
the above example that 9+ are not separated by spaces.

The above example should produce the following output file containing the three address
instructions:

Add RO 5 9

Sub R1 3 RO

Mul R2 2 3

Div R3 R1 R2

It is not necessary to reuse registers within an expression as shown in module 2, section II-B, and
you can assume there are as many available as needed. Each new expression should, however,
begin using registers starting at RO.

Inheritance should be used to define the arithmetic expression tree. At a minimum, it should
involve three classes: an abstract class for the tree nodes and two derived classes, one for
operand nodes and another for operator nodes. Other classes should be included as needed to
accomplish good object-oriented design. All instance data must be declared as private.

You may assume that the expression is syntactically correct with regard to the order of operators
and operands, but you should check for invalid tokens, such as characters that are not valid
operators or operands such as 2a, which are not valid integers. If an invalid token is detected a

RuntimeException should be thrown and caught by the main class and an appropriate error
message should be displayed. Below is an example:

Enter Postfix Expression |2 3 &

Construct Tree

Infix Expression

Message X

® Invalid token &

You are to submit two files.

1. The firstis a . zip file that contains all the source code for the project, which includes
any code that was provided. The . zip file should contain only source code and nothing
else, which means only the . java files. If you elect to use a package the . java files
should be in a folder whose name is the package name.

2. The second is a Word document (PDF or RTF is also acceptable) that contains the
documentation for the project, which should include the following:

a. A UML class diagram that includes all classes you wrote. Do not include
predefined classes. You need only include the class name for each individual
class, not the variables or methods

b. A test plan that includes test cases that you have created indicating what aspects
of the program each one is testing

c. A short paragraph on lessons leamned from the project

Grading Rubric:

Criteria Meets Does Not Meet

5 points 0 points
GUI is hand coded and matches GUI is generated by a GUI generator or
required design (1) does not match required design (0)

Design Inheritance hierrachy with at least | Inheritance hierrachy not used or has less

3 classes is used (2) than 3 classes (0)
Other classes are used to support | Does not use other classes to support
good object-oriented design (1) good object-oriented design (0)
All instance data is private (1) Some instance data is not private (0)

10 points 0 points
Produces correct fully Does not produce correct fully
parenthesized infix expressions for | parenthesized infix expressions for some
all input (3) input (0)
Produces correct three address Does not produce correct three address

Functionality file for all input (3) file for some input (0)

Correctly parses expressions Does not correctly parse expressions
without space delimiters (2) without space delimiters (0)
Registers restart at RO on each Registers do not restart at RO on each
new expression (1) new expression (0)
Detects invalid tokens (1) Does not detect invalid tokens (0)

5 points 0 points
All operators included in test cases | Some operators not included in test cases
(2) (0)
Test cases include expressions Test cases don't include expressions
without spaces (1) without spaces (0)

Test Cases

Test cases include a case to test
invalid token beginning with a
digit (1)

Test cases do not include a case to test
invalid token beginning with a digit (0)

Test cases include a case to test
invalid operators (1)

Test cases do not include a case to test
invalid operators (0)

Documentation

5 points

0 points

Correct UML diagram included (2)

Correct UML diagram not included (0)

Lessons learned included (2)

Lessons learned not included (0)

Comment blocks with class
description included with each
class (1)

Comment blocks with class description
not included with each class (0)

Overall Score

Meets

Does not meet

16 or more

0-15

