
CSE 101 (Section 01) Spring 2017

Homework 3

Due: Wednesday, April 12, at 11:59 PM. Submit your completed Python source file through
Blackboard (multiple submissions are permitted; we will only grade the last/latest submission).
Submissions that do not execute due to syntax or other errors will receive a 0.

Description

Many years ago (in the 1970s and 1980s), most computer games didn't have fancy graphics or
elaborate controls. Instead, they took the form of "text adventures" like Adventure (AKA
Colossal Cave Adventure) and the Zork series, where the game presented written descriptions
of various locations in the game and players typed in commands to move around and solve
puzzles (this genre still exists today under the title of "interactive fiction"). Some of these games
became extremely elaborate, featuring dozens or hundreds of in-game locations and the ability
to understand complicated commands (e.g., "open the door with the green key", not just "open
door"). For this assignment, you will write a parser that reads in a data file written in a special
format and runs the resulting text adventure game. We won't create anything as sophisticated
as the classic text adventure Zork, but we will still support a number of basic commands and
simple puzzles.

Note that the following instructions are long, but if you follow them closely, you will find that the
actual solution process for this assignment is not extremely complicated. It mainly consists of a
number of loops and nested if-elif-else chains. Even so, start this homework early;
don't wait until the last minute to begin it!

Part 1: Loading the Data File

Every game consists of a collection of locations, called rooms. Every room has four required
pieces of information:

• A unique room number (this value is used internally to track the player's current position; it is
hidden from the player)

• A room title (a word or short phrase that identifies the room, like "Kitchen")
• A room description (a string containing a text description of the room's appearance). A

description may be specified using multiple lines of the data file.
• A list of exits (directions that the player may go to travel to a different room). A room may have

exits in any combination of the four cardinal directions (north, south, east, and west).

A room may also have one or both of the following optional elements:

• A list of one or more items (objects that the player can pick up during the course of the game
for use in solving puzzles)

• A puzzle that must be solved in order to progress in the game. Puzzles generally award points
for being solved, and may reveal new locations in the game and/or produce new items that the
player can use to solve other puzzles (for example, the player may need to solve Puzzle 1 to
gain a new item that will let the player solve Puzzle 2 in another room). Like room
descriptions, puzzles are specified using multiple lines within the data file. Each room may
have up to one puzzle.

Stony Brook University

CSE 101 (Section 01) Spring 2017

Each type of element (except for the room number) is preceded by a specific identifying header
(like "title" or "exits"). For example, the data file may contain a line like:

exits null 2 null 3

indicating that the current room has exits to the south (leading to room 2) and to the west
(leading to room 3). Exits are listed in order — north, south, east, and west — with "null" used
as a placeholder to indicate that there is no exit in that direction.

Within the data file, the data for a room is always terminated by a line containing exactly 5
dashes ("-----").

For example, here is a complete room from a sample data file:

1
title Entry Portal
exits null 2 null 3
items screwdriver
description This is a white, featureless room about ten feet square.

This room (location number 1) is called the "Entry Portal". It has two exits (to the south and to
the west, leading to rooms 2 and 3 respectively), and contains one item (a screwdriver) that the
player can pick up and use. Finally, it contains a short description of the room's appearance.

We will use a (global) dictionary to store the rooms of our game. The room's number will serve
as the key; its value will be another dictionary containing all of the other information about the
room.

Start by defining a Python function with the following header:

def loadRooms(filename):

Inside this function, create several temporary variables to hold information about the current
room. You will need:

• A variable to hold the new room number
• A string to hold the new room title
• A dictionary to hold the set of room exits
• A list to hold any items that may be present in this room
• A dictionary to hold any puzzle-related data for this room
• A string to hold the new room's description text

Then open the data file whose name was passed in a the function argument. For each line in
the file:

1. If the line matches or begins with "-----" (use the startswith() command), then the
current room description is complete. Do the following: 

Stony Brook University

CSE 101 (Section 01) Spring 2017

a. Create a new dictionary and store the elements of the current room in it (use appropriate
strings as keys, like "title" for the room title and "items" for the list of items). If your puzzle
dictionary contains a key named 'result' and a value named 'solved' (more on this later),
then add the puzzle dictionary to your room data dictionary as well. 
 
At the end of this step, you should have a dictionary that looks something like the
following (the actual content will vary based on the data file you're currently processing): 
 
roomData = { 'title': 'Throne room',  
 'items': ['scepter', 'crown'],  
 'exits': {'north': 5, 'east': 3, 'south': 15, 'west': 'null'},  
 'description': 'This is, or was, the king's throne room. An
enormous golden chair, sparkling with gems, sits in its center.
The room is dusty and cobwebs are everywhere, suggesting that
this room has not been used or visited in some time.' }  

b. Assign your room data dictionary to your room dictionary using the room number as its
key. 

c. Finally, set your room data dictionary and your temporary variables back to empty
strings, lists, or dictionaries in preparation for the next set of room data. 

2. Otherwise: 

a. Split up the contents of the current line. 

b. Call Python's isnumeric() function on the first element of the split line to determine if
it is a potential room number (i.e., if it contains only digits). If isnumeric() returns
True, convert the first element to an integer and assign it to your room number variable: 
 
if pieces[0].isnumeric():  
 roomNumber = int(pieces[0])  

c. If the first element of the split line is 'title', use join() to reassemble the remaining
pieces of the line (positions 1 onward) and store the result in your room title variable. 

d. If the first element of the split line is 'exits', add the next four pieces of the split line to
your exits dictionary under the keys (in order) 'north', 'south', 'east', and 'west'. 

e. If the first element of the split line is 'items', add the remaining pieces of the line to your
items list. Note that every item in the data file will have a one-word name (e.g., 'hammer'
but not 'circular saw'), so each "word" is a separate item. 

f. If the first element of the split line is 'description', use join() to reassemble the rest of
the line and append it to your room description string. DO NOT simply assign it to that
string, as the room description text may be broken up across multiple 'description' lines,
and assignment will replace any earlier parts of the room description. 

Stony Brook University

CSE 101 (Section 01) Spring 2017

g. If the first element of the split string is 'puzzle', then we need to add several values to the
puzzle dictionary for this room. The format for a "puzzle" statement is as follows: 
 
puzzle required-item point-value new-item new-direction new-room-number 
 
For example: 
 
puzzle hammer 15 null south 22  
 
or: 
 
puzzle phaser 25 tricorder null null  
 
or: 
 
puzzle key 10 ring west 13  
 
That is, solving the puzzle (using the required item or "magic word") may award points
for the player's score, may add a new item to the room's item list (if solving the puzzle
doesn't produce a new item, this field will be 'null'), and may reveal a new exit (if the
puzzle doesn't change the room's exit situation, then the last two fields will each be
'null'). 

i. Add the string 'solved' (all lowercase) to your puzzle dictionary with the second line
element (e.g., pieces[1]) as its key. 

ii. Add the third element of the line (as an integer) to the puzzle dictionary with the key
'points'. 

iii. Add the fourth element of the line to the puzzle dictionary with the key 'item'. 

iv. Add the fifth element of the line to the puzzle dictionary with the key 'direction'. 

v. Add the sixth element of the line to the puzzle dictionary with the key 'newroom'. 

h. If the first element of the split string is 'puzzle-text', then append the remainder of the
line (as a joined string) to your puzzle dictionary with the key 'description' (use
setdefault()) to test for the presence of 'description' first). 

i. Finally, if the first element of the split string is 'puzzle-result', then append the remainder
of the line (as a joined string) to your puzzle dictionary with the key 'result' (use
setdefault() to test for the presence of 'result' first). 

Part 2: Playing the Game

Now that we've loaded the game data from a text file, we need to build a parser that will let the
player move around within the game. We will use two functions to accomplish this.

Stony Brook University

CSE 101 (Section 01) Spring 2017

1. First, we want to display information about the player's current status (i.e., score and
number of moves) and location. Start by defining a new function with the following header: 
 
def printRoom(number, moves, score)  
 
In this function: 

a. Print out the current room's title, the player's number of moves so far, and the player's
current score (out of 100), all on a single line. For example: 
 
Transporter Room (15 move(s), score: 25/100) 

b. Print out the room's description. 

c. If the current room contains a puzzle and that puzzle has a 'description' key, print the
puzzle's description text. 

d. Print a list of the room's exit directions (separated by spaces), preceded by the text "You
can go:". You should only print exit directions whose values are not 'null'. If the room has
no valid exit directions, print "There are no visible exits" instead. For example: 
 
You can go: north south 
 
or 
 
There are no visible exits 

e. If the room contains any items, print out the elements of that list (separated by spaces),
preceded by "Items you can see:". For example: 
 
Items you can see: hammer screwdriver wrench 

2. Next, we need a function to interpret the player's commands. A user command consists of
one or two words, like a direction name or an instruction to use a particular item from the
player's inventory. User commands can be entered in any case, but should be converted to
lowercase when read in to simplify processing. Our interpreter function will use the global
dictionary of room data, and should do the following when called: 

a. Initialize the game variables: 

i. A list representing the player's inventory (the items that the player is currently
carrying). For simplicity, we will assume that the player's inventory is of unlimited
size. 

ii. An integer representing the player's current score. 

iii. An integer representing the number of moves taken so far. 

Stony Brook University

CSE 101 (Section 01) Spring 2017

iv. An integer representing the number of the player's current room. For simplicity, our
games will always begin in room 1. 

v. (optional) A variable to keep track of whether the game has ended or not. The game
will not end until the player types "exit" or "quit". 

b. Enter a loop to play the game, by reading and responding to user commands. While the
game is still in progress: 

i. Print the description of the current room. 

ii. Read in the player's next command. Use a single right arrow bracket ('>') followed by
a single space as the command prompt. Be sure to convert the player's command to
lowercase. 

iii. Process the player's command. If the command is "exit" or "quit", end the main game
loop. Otherwise, add 1 to the player's number of moves, and act on the command as
follows: 

1. If the command is "inventory", print out a list of the player's current inventory
items with an appropriate message. If the player's inventory is empty, print a
message to that effect. 
 
For example: 
 
> inventory 
You currently have: phaser tricorder 
 
or 
 
> inventory 
Your inventory is currently empty 

2. If the command is a direction ('north', 'south', 'east', or 'west'), check the value of
that key in the room's dictionary of exits. If the associated value is 'null', print a
message like "You can't go that way". Otherwise, set the player's current room to
the direction's value. 

3. If the command is "take", check to see if the second word in the command is
present in the current room's list of items. If it is, print "Taken", add the item to the
player's inventory, and remove it from the room's list of items. If the item is not
found, print an appropriate message (e.g., "You can't take the X"). 
 
For example: 
 
> take hammer 
Taken  
 
or 

Stony Brook University

CSE 101 (Section 01) Spring 2017

 
> take phaser 
You can't take the phaser 

4. If the command is "use" or "offer", look at the second word of the command. If the
second word (the item name) is not present in the player's inventory, print "You
don't have one of those!". Otherwise, if the current room does not have a puzzle,
print "Nothing happens". Otherwise, if the second word is not in the puzzle's list
of keys, print "It doesn't work". Otherwise: 

a. Print the puzzle's result. 

b. Update the player's score with the puzzle's point value and print a message
to that effect ("You have just earned X points."). 

c. If the puzzle has an item, add that item to the room's list of items. 

d. If the puzzle has a non-'null' direction, update the room's list of exits with that
direction and the room's "new room" value (as an integer value). 

e. Delete the puzzle from the room's dictionary using the del command. 

5. If the command is "say", proceed as you did for the "use" command above, but
don't check to see if the "magic word" is in the player's inventory first. 

6. Otherwise, print "You can't do that" to indicate that the command is not
recognized. For example: 
 
> breakdance  
You can't do that. 

c. When the game loop ends, print a message to end the game: 
 
Your adventure is over. Your final score is X out of 100 points, in Y move(s). Have a nice
day! 

c. Finally, add a few Python statements to read in the name of a data file from the user and call
your functions to start the game.

 
 
 
 
 
 
 
 
 

Stony Brook University

CSE 101 (Section 01) Spring 2017

(Partial) Sample Program Output

(user input is in bold; program output is in italics)

Enter the name of the game file to load: testmaze.txt

Entry Portal (0 move(s), score: 0/100)

This is a white, featureless room about ten feet square.

You can go: south west
Items you can see: screwdriver
> south

South Room (1 move(s), score: 0/100)

Here is another empty room with no remarkable characteristics.

You can go: north
> east
You can't go that way

South Room (2 move(s), score: 0/100)

Here is another empty room with no remarkable characteristics.

You can go: north
> north

Entry Portal (3 move(s), score: 0/100)

This is a white, featureless room about ten feet square.

You can go: south west
Items you can see: screwdriver
> take screwdriver
Taken.

Entry Portal (4 move(s), score: 0/100)

This is a white, featureless room about ten feet square.

You can go: south west
> inventory
You currently have: screwdriver

Entry Portal (5 move(s), score: 0/100)

This is a white, featureless room about ten feet square.

Stony Brook University

CSE 101 (Section 01) Spring 2017

You can go: south west
> west

Sphinx Room (6 move(s), score: 0/100)

There is a huge skylight overhead, far out of your reach or ability to climb to. One wall of this
room features a button panel that has seen better days.

The room is mostly filled by an enormous Egyptian sphinx. It turns to look at you as you enter
the room, and wails "Will no one fix this control panel for me?" as it gestures toward the button
panel. You observe that the lower left corner of the panel is missing a screw.

You can go: east
> sleep
You can't do that.

Sphinx Room (7 move(s), score: 0/100)

There is a huge skylight overhead, far out of your reach or ability to climb to. One wall of this
room features a button panel that has seen better days.

The room is mostly filled by an enormous Egyptian sphinx. It turns to look at you as you enter
the room, and wails "Will no one fix this control panel for me?" as it gestures toward the button
panel. You observe that the lower left corner of the panel is missing a screw.

You can go: east
> use screwdriver

You deftly replace the missing screw in the corner of the button panel. When you are done, the
sphinx breaks into an enormous smile and then claps you on the back with an enormous paw
before tapping a button on the panel to open the skylight. The sphinx then soars up and away,
through the skylight. A new, previously-hidden doorway slides open to the west.
You have just earned 100 points.

Sphinx Room (8 move(s), score: 100/100)

There is a huge skylight overhead, far out of your reach or ability to climb to. One wall of this
room features a button panel that has seen better days.

You can go: east west
> exit

Your adventure is over. Your final score is 100 out of 100 points, in 8 move(s). Have a nice day!

Stony Brook University

CSE 101 (Section 01) Spring 2017

Grading Breakdown

This assignment is worth a total of 30 points, based on program performance as follows:

Point Value Grading Criterion

5 Program correctly displays the room description, score, and number of moves

5 Program correctly processes movement/direction commands

2 Program correctly processes the 'inventory' command

3 Program correctly processes the 'take' command

5 Program correctly handles puzzles with the "use"/"say"/"offer" commands

5 Program correctly ends the game when requested, or when the player achieves 100
points

5 Program correctly handles unrecognized/misspelled commands

Stony Brook University

