% University at Buffalo
The State University of New York

EAS 240: Introduction to Programming for Engineers

Individual Project: Battleship - Fall 2017

Assigned: Wednesday, March 22
Due: Friday, April 7 at 11:59 PM

1 Introduction

1.1 Project Overview

Battleship is a two-player guessing gameE Each player arranges a fleet of ships on a two-dimensional
grid, while keeping their locations concealed from the opposing player. The players take turns calling
attacks on each other’s fleets and the first player to destroy the opponent’s fleet wins the game.

In this project, you will create a simple one-player version of this game, where the player calls
attacks on a fleet of ships at unknown locations on a one-dimensional grid. Although the game is
conceptually simple, you will find that implementing it requires using almost every C programming
concept that we have covered in lecture, including:

1. User and file input/output (I/0).
2. Control flow (if-else statements, while loops, for loops, etc.).
Functions, header files, and source files.

Arrays, strings, pointers, and dynamic memory allocation.

AN

Structures.

1.2 C Learning Outcomes
While completing this project, you will learn the following about C programming;:
1. How to use command-line arguments in your programs (Section 5.10 in K&R).

2. How to work with structures, structure pointers, and arrays of structures (Lecture 9 and
Sections 5-5.4 in K&R).

3. How to create dynamically sized arrays of built-in and user-defined data types using dynamic
memory allocation (Lecture 7).

4. How to divide a large program into small manageable parts.

5. How to test each part of a program individually.

"https://en.wikipedia.org/wiki/Battleship_(game)


https://en.wikipedia.org/wiki/Battleship_(game)

1.3 Time Commitment

This project requires you to implement 7 functions of varying difficulty (including main()). De-
pending on your current proficiency with C, and how much time you need to review the lecture
slides and textbook, this may take you anywhere from 4 to 40 hours. I recommend that you attempt
to implement and test at least one function per day so that you have sufficient time to overcome
any roadblocks that you encounter.

2 Preliminaries

2.1 Game board

Consider a one-dimensional game board of integer size boardsize. All ships in the fleet must sit
entirely on the game board. You will number grid points on the game board starting at 0 and ending
at boardsize - 1. You will assume that there are numships battleships on the board at the start
of the game. The boardsize and numships variables will be initialized from a configuration file as
described later in Section 2.4]

Note: There is no need to represent the board as an array. Just knowing the boardsize will be
sufficient.

2.2 Battleship structure

In your program, you will represent a battleship as a structure with three member variables. Here
is the structure’s declaration

struct battleship {

int xbody; /% pointer to an array x/
int size; /x battleship size %/
int pos; /% battleship position x/

}s

where:

1. battleship is the structure tag. The tag names the structure, and can be used to define
battleship structure variables. For example, after the battleship structure is declared as above,
then

struct battleship ship;

defines the variable ship as type struct battleship.

2. The member variable size defines the battleship’s size. This represents the number of
grid points that the ship occupies on the one-dimensional game board and the number of hits
that it will take to be destroyed. If the variable ship is type struct battleship, then we
can access its size as ship.size. The size of each ship will be determined at run-time (as
opposed to compile-time) from a configuration file as described later in Section

3. The member variable pos defines the battleship’s position on the one-dimensional game
board. If the variable ship is type struct battleship, then we can access its position as



ship.pos. The ship will occupy grid positions ship.pos, ship.pos + 1, ..., ship.pos +
ship.size - 1. Therefore, if the game board has size boardsize, then valid ship positions
satisfy ship.pos > 0 and ship.pos + ship.size < boardsize. The position of each ship
will be determined at run-time (as opposed to compile-time) from a configuration file as
described later in Section 2.4l

4. The member variable body is an integer pointer. If the variable ship is type struct
battleship, then we can access this pointer as ship.body. We want ship.body to point to
the first element of an array with ship.size elements, each representing a segment of the
ship. However, since ship.size is not known at compile-time, we must dynamically allocate
memory to the array. The statement

ship.body = (int %) malloc(ship.size * sizeof(int));

allocates a contiguous block of memory that is large enough to hold ship.size integers
and sets ship.body to point to the start of the block. We can then treat ship.body as
an array with ship.size elements, i.e., we may access ship.body[0], ship.body[1], ...,
ship.body[ship.size - 1]. If no attack has landed on the ith segment of the ship, then
ship.body[i] will have value 1; otherwise, it will have value 0, indicating that the segment
is damaged. If all elements of ship.body are 0, then the ship is sunk (i.e., destroyed).

2.3 Fleet array

You will represent the fleet of battleships as an array of battleship structures. The number of ships
will be determined at run-time (as opposed to compile-time) from a configuration file as described
later in Section Since the number of ships is not known at compile-time, we must dynamically
allocate memory to the array. To do this, we first need to define a battleship structure pointer:

struct battleship xfleet ;

Then, the statement

fleet = (struct battleship %) malloc(numships % sizeof(struct battleship));

allocates a contiguous block of memory that is large enough to hold numships battleship structures
and sets fleet to point to the start of the block. We can then treat fleet as an array with
numships elements, i.e., we may access fleet [0], fleet[1], ..., fleet [numships - 1]. Note that
fleet[i] is now the ith battleship and we can access its member variables just like any other
battleship structure variable, i.e., fleet[i].size, fleet[i].pos, and fleet[i].body[j] (this
accesses the jth segment of the ith ship’s body).

2.4 Game configuration file

As mentioned above, the board size, number of ships, ship sizes, and ship positions will be deter-
mined at run-time from a configuration file. An example configuration file is listed as follows:

boardsize: 20
numships: 2
ship0: 4 4
shipl: 2 13



This configuration file defines the board size to be 20, the number of ships to be 2, and then
provides the size and position (in that order) of each of the two ships. The game board created by
this configuration file is illustrated in Figure [I] and a detailed view of the body of each ship in the
fleet is illustrated in Figure

Another example configuration file is listed as follows:

boardsize: 50
numships: 4

shipO0: 5 2

shipl: 4 10
ship2: 3 20
ship3d: 2 25

This configuration file defines the board size to be 50, the number of ships to be 4, and then provides
the size and position (in that order) of each of the four ships.

Note: When creating the configuration file, make sure that (i) the number of ships listed matches
the number specified next to the numships label; (ii) all ships sit entirely on the board given the
board size, their positions, and their sizes; and (iii) no ships overlap given their positions and
sizes. To keep the program as simple as possible, you are not expected to provide any formal error
checking for the configuration file; however, to avoid trouble when testing your code, be sure to
follow the aforementioned guidelines.

2.5 Command-line arguments

You will use a command-line argument to specify the input file name. In particular, if your
executable program is called battleship.out and your configuration file is called config.txt,
then you will execute the program from the terminal as:

./battleship.out config.txt

Read Section 5.10 in K&R to learn how to use command-line arguments. The first and third
example programs will be especially helpful. You should test both of these yourself to understand
how they work before you attempt to add command line arguments to your own program.

2.6 Game play example

Below is an example of the game being played based on the first configuration file listed in Sec-
tion [2.4] with its game board illustrated in Figure[[] A full description of what you need to do to
create this program is provided in Section [3]

Loading config—example —1.txt ...
Enter attack coordinate (0 — 19):
—1

Invalid attack coordinate.

Enter attack coordinate (0 — 19):
25

Invalid attack coordinate.

Enter attack coordinate (0 — 19):
10



Miss !

Enter attack coordinate (0 — 19):
13

Hit!

Enter attack coordinate (0 — 19):
12

Miss !

Enter attack coordinate (0 — 19):
14

Hit!

You sunk my battleship!

Enter attack coordinate (0 — 19):
4

Hit!

Enter attack coordinate (0 — 19):
5

Hit!

Enter attack coordinate (0 — 19):
6

Hit!

Enter attack coordinate (0 — 19):
7

Hit!

You sunk my battleship!

You sank 2 battleships in 8 turns!

2.7 Useful resources
Some useful resources can be found at the following links:
1. Structures: https://www.tutorialspoint.com/cprogramming/c_structures.htm

2. Dynamic memory allocation: https://www.tutorialspoint.com/cprogramming/c_memory_
management .htm

3. Command-line arguments: https://www.tutorialspoint.com/cprogramming/c_command_
line_arguments.htm

3 Assignment

3.1 What you need to do

You will use a divide-and-conquer strategy to complete this project. We have broken the problem
into nine (9) functions (including main()). The first two (2) functions are provided for you. You
will implement and test the remaining seven (7) functions and combine them together to complete
the project. We recommend that you implement and test each function in the order that they are
listed below.


https://www.tutorialspoint.com/cprogramming/c_structures.htm
https://www.tutorialspoint.com/cprogramming/c_memory_management.htm
https://www.tutorialspoint.com/cprogramming/c_memory_management.htm
https://www.tutorialspoint.com/cprogramming/c_command_line_arguments.htm
https://www.tutorialspoint.com/cprogramming/c_command_line_arguments.htm

3.1.1 shipState

shipState() is provided for you. It has the following function prototype:
int shipState(struct battleship ship);

e Input parameters: shipState() takes as input a battleship structure.
e Return type: shipState() returns an integer.
e Functionality: shipState() returns 1 if the ship is operational (i.e., at least one segment
is not damaged), and 0 otherwise (i.e., if all segments are damaged).
3.1.2 shiplInfo

shipInfo() is provided for you. It has the following function prototype:
void shipInfo(struct battleship ship);

e Input parameters: shipInfo() takes as input a battleship structure.
e Return type: shipInfo() does not return anything.
e Functionality: shipInfo() prints information about the ship.

e Hint: shipInfo() does not need to be used in the program, but will be helpful for you to
test and debug other functions.

3.1.3 makeShip

makeShip() has the following function prototype:
struct battleship makeShip(int size, int pos);

e Input parameters: makeShip() takes as input the size and position of the ship.
e Return type: makeShip() returns a battleship structure.

e Functionality: makeShip() defines and initializes a battleship structure. It sets the battle-
ship’s member variables size and pos based on its input parameters; it allocates a contiguous
block of memory that is large enough to hold size integers and sets the member variable
body to point to the start of the block; it assigns 1 to every element of body, which can be
treated as an array with size elements after it has been allocated memory; and, finally, it
returns the initialized battleship structure variable.

e Hint: makeShip() requires you to work with a structure variable. Review K&R. Sections 6-
6.2 and Lecture 9 to remind yourself how to work with structures. Use malloc() for dynamic
memory allocation.

e Testing: Use the main source file test_1.c to test the functionality of makeShip(). Study
this source file carefully since it will teach you how to (i) work with the battleship structure
and (ii) write your own simple code to test functions.



3.1.4 hitShip

hitShip() has the following function prototype:

int

hitShip (struct battleship xship, int attackpos);

Input parameters: hitShip() takes as input a battleship structure pointer and an attack
position/coordinate.

Return type: hitShip() returns an integer.

Functionality: hitShip() returns 1 if the attack on position attackpos hits a non-damaged
segment of the battleship’s body, and returns 0 otherwise. If a non-damaged segment is hit
(i.e., a segment with value 1), then it should be set to 0 to indicate that it is damaged. Note
that hitShip() takes as input a battleship structure pointer so that it can access and change
the structure variable in the function that called it. This is necessary to ensure that any
damage to the ship is properly recorded.

Hint: hitShip() requires you to work with a structure pointer. Review K&R Section 6.2
and Lecture 9 to remind yourself how to access member variables through a structure pointer.

Testing: Use the main source files test_2.c and test_3.c to test the functionality of
hitShip(). Study these source files carefully since they will teach you how to (i) use the
hitShip() function and (ii) write your own simple code to test functions.

3.1.5 fleetState

fleetState() has the following function prototype:

int

fleetState (struct battleship xfleet , int numships);

Input parameters: fleetState() takes as input a battleship structure pointer and the
number of ships in the fleet.

Return type: fleetState() returns an integer.

Functionality: fleetState() returns 1 if at least one ship in the fleet is operational, and
returns 0 otherwise (i.e., if all ships in the fleet are destroyed).

Hint: Within fleetState(), you can access the ith battleship in the fleet as fleet[i] and
determine if it is operational or destroyed with the function shipState().

Testing: Create your own source file to verify that fleetState() works correctly.

3.1.6 attack

attack() has the following function prototype:

void attack (struct battleship *fleet , int numships, int attackpos);



e Input parameters: attack() takes as input a battleship structure pointer, the number of
ships in the fleet, and the attack position/coordinate.

e Return type: attack() does not return anything.

e Functionality: attack() checks to see if any ship in the fleet is hit by the attack at
attackpos. If a ship is hit, then it prints "Hit!\n"; if the ship is destroyed by the hit,
then it prints "You sunk my battleship!\n"; if no ship is hit, then it prints "Miss!\n";

e Hint: Within attack(), you can access the ith battleship in the fleet as fleet[i] thanks
to the close relationship between arrays and pointers. Use hitShip() to determine if a ship
has been hit and use shipState() to see if a hit ship has been sunk/destroyed.

e Testing: Create your own source file to verify that attack() works correctly.

3.1.7 setupGame
setupGame () has the following function prototype:

struct battleship xsetupGame(char *filename, int xboardsize, int snumships);

e Input parameters: setupGame () takes as input a character pointer and two integer point-
ers.

e Return type: setupGame () returns a pointer to an array of battleship structures.

e Functionality: setupGame() defines a battleship structure pointer named fleet; opens
and reads the configuration file specified by the filename string; sets the caller’s variables
boardsize and numships using their respective pointers; dynamically allocates memory to
the struct battleship pointer; initializes the array of battleship structures; and returns the
battleship structure pointer.

e Hint: First, read the boardsize and numships values from the configuration file using
fscanf (). Then, use malloc to allocate a contiguous block of memory that is large enough
to hold numships battleship structures. Next, read the size and position of each battleship
from the configuration file using fscanf () and use makeShip() to initialize fleet [0] through
fleet [numships - 1]. Finally, return fleet.

e Testing: Create your own source file to verify that setupGame () works correctly.

3.1.8 playGame
playGame () has the following function prototype:

int playGame(struct battleship xfleet , int numships, int boardsize);

e Input parameters: playGame() takes as input a battleship structure pointer, the number
of ships in the fleet, and the board size.

e Return type: playGame () returns an integer.



e Functionality: While the fleet is not sunk, playGame () prompts "Enter attack coordinate
(0 - %d):\n", where %d is replaced by boardsize - 1. It then reads the attack position
from standard input using scanf (). If the attack position does not land on the board, it
prints "Invalid attack coordinate.\n" and repeats the prompt. If the attack position is
legal, then it calls the attack () function. Finally, after the fleet is sunk, playGame () returns
the number of turns that the user took to sink the fleet (only count turns with attacks on
legal board positions).

e Hint: Use fleetState() to determine if the fleet has been sunk/destroyed.

e Testing: Create your own source file to verify that playGame () works correctly.

3.1.9 main

main() begins by parsing the program’s input arguments. If the program is not called correctly
(either too many or two few input arguments), then print "Usage: %s config-file\n", where
%s is replaced by the program’s executable file name. If the program is called correctly, then print
"Loading %s...\n", where %s is replaced by the configuration file’s name. Subsequently, use the
setupGame () function to initialize the fleet and the playGame () function to start the game. Finally,
use free() to cleanup the dynamically allocated memory (free fleet[i] .body for each ship in the
fleet and then free fleet).

3.2 Files
The following files are packaged with this project description to help you complete the project:

1. 1libbattleship.h: Contains the prototypes of all the functions that you need to implement.

2. libbattleship.c: Contains the implementation of two functions: shipState() and printInfo().

You will implement the rest of the required functions in this file.
3. battleship.c: Contains an empty main() function. You will implement main () in this file.

4. test_1.c, test_2.c, test_3.c: Contains example code for you to test your makeShip() and
hitShip() functions.

3.3 Submission guidelines

Before submitting your work to the automatic grading system, you must compress all of your files
into a tar file. To do this, use the following command in the Linux terminal:

tar -cvf projectl.tar battleship.c libbattleship.c libbattleship.h

This command will create the file projectl.tar containing all of your header and source files.
Submit projectl.tar in the Project 1 area at https://autograder.cse.buffalo.edu/.

WARNING: If the tar file does not exactly match the format described above then the au-
tograder system will not be able to grade your work and will assign you a 0 for every program. If
this happens, then you will have to correct the file names and/or tar structure, create another tar
file, and upload it again.


https://autograder.cse.buffalo.edu/

fleet[0] .size = 4 fleet[1l] .size = 2
fleet[0] .pos = 4 fleet[1l] .pos = 13

| —A
[ |

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

|

boardsize = 20

Figure 1: A fleet of 2 ships on a game board of size 20. The zeroth ship in the fleet (i.e., fleet [0])
has taken damage to its second body segment (i.e., fleet [0] .body[2] is equal to 0). The first
ship in the fleet (i.e., fleet[1]) has taken damage to both of its segments, therefore, it is sunk.

c 1 2 3 —numships = 2
fleet [1] .body ._4m
0 1

Figure 2: Detailed view of fleet[0].body and fleet[1] .body from Figure



	Introduction
	Project Overview
	C Learning Outcomes
	Time Commitment

	Preliminaries
	Game board
	Battleship structure
	Fleet array
	Game configuration file
	Command-line arguments
	Game play example
	Useful resources

	Assignment
	What you need to do
	shipState
	shipInfo
	makeShip
	hitShip
	fleetState
	attack
	setupGame
	playGame
	main

	Files
	Submission guidelines


