
CS1026: Assignment 4

Weight: 14%

Learning Outcomes:
By completing this assignment, you will gain skills relating to

 Strings and text files

 Writing your own classes

 Testing code

 Using complex data structures (i.e., sets and dictionaries)

In this assignment you will create a complete program that uses classes to store, search, sort, remove,
and filter country data. The two major tasks are outlined below.

1. Implement a class Country

 Instance Variables:
i. Name: string

ii. Population: integer
iii. Area: float
iv. Continent: string

 Methods:
i. constructor

ii. Getter Methods: getName, getPopulation, getArea, getContinent,
iii. getPopDensity: This calculates and returns the population density for the

country. Population density is the population divided by the area.
iv. Setter Methods: setPopulation
v. def __repr__(self): generate a string representation for the class

Name in Continent with a population density of value
e.g China is in Asia with a population density of 4.56

class Country :
 def __init__(self, name, pop, area, continent) :
 def __repr__(self):
 def setPopulation(self, pop):
 def getName(self) :
 def getArea(self) :
 def getPopulation(self) :
 def getContinent(self):
 def getPopDensity(self) :

Test all your classes and methods before moving to the next section. Feel free to create other
helper methods if necessary.

2. Implement a class called CountryCatalogue
This class has two instance variable catalogue (that is a set or dictionary or list of countries)

and cDictionary (a dictionary)
This class will have the following methods.

 Constructor: this method will open the specified file and then first create the
cDictionary and then create countries and add them to the second data constructor.
 Major Steps

1. Fill the Dictionary: open the continent.txt file and fill cDictionary. The
key is the country name, while the continent is the value.

2. Fill the Catalogue: Open the file (the file name is passed into the
constructor). Then read each line of the file and from that create a
country and add it catalogue.

A sample data file has been included data.txt (Note that both files have headers)

 addCountry: Give the user the option to add a new country to the set.
Using user input the user must specify the name, population, area and continent. If the
country they entered already exists, let them know they can’t add a country already in
the catalogue and keep on prompting for input until a unique name has been entered.
In addition to adding the newly created country to the catalogue, make sure you add
the continent to the cDictionary. Include a confirmation message to let the user know
whether the operation was successful or not.

 deleteCountry: allows the user to enter a specific countryName, if this country exists
then it should be deleted from the catalogue instance variable. Include a confirmation
message to let the user know whether or not it was deleted.

 findCountry: allows the user to enter a specific countryName, if this country exists then
print all of the country’s information to the output screen. If the country does not exist
send a message as well.

 filterCountriesByContinent: allow the user to enter a specific continent (assume valid
continent), print to the screen all the countries (just their names) in the catalogue that
are in that continent.

 printCountryCatalogue: print the whole catalogue to the screen, one country object as
a time using the overloaded repr method for the Country class.

 setPopulationOfASelectedCountry: Ask the user for a country name and new
population and then set the population of the country (if it is in the catalogue) to the
value. Print the new population density value for that country to the screen (don’t
worry about units).

 findCountryWithLargestPop: find and display the name of the country with the largest
population to the screen

 findCountryWithSmallestArea: find and display the name of the country with the
smallest area to the screen.

 filterCountriesByPopDensity: ask the user to enter the lower bound and upper bound
for a population density range and then find all countries that have a population
density that falls within the range. Assume valid input of integers.

 findMostPopulousContinent: find and display the name of the continent with the most
number of people living in it. Also display the number of people living in the continent.

 saveCountryCatalogue: allow the user to save all the countries to a file. Countries
should be sorted alphabetically by name prior to saving. Population density should be
rounded up to two decimal places.

Format:
Name|Continent|Population|PopulationDensity

For example: China|Asia|1200000000|14.56

After saving all the countries print a confirmatory message to the screen to let the user
know that it was saved to the specified file.

class CountryCatalogue:
 def __init__(self, filename):
 def filterCountriesByContinent(self):
 def printCountryCatalogue(self):
 def findCountry(self):
 def deleteCountry(self):
 def addCountry(self):
 def setPopulationOfASelectedCountry(self):
 def saveCountryCatalogue(self, filename):
 def findCountryWithLargestPop(self):
 def findCountryWithSmallestArea(self):
 def findMostPopulousContinent(self):
 def filterCountriesByPopDensity(self):

Test your countryCatalogueClass to make sure all functionality is working.

Use the main.py file provided as the interface to your program. The TA will use a similar main.py to
grade your assignment. DO NOT EDIT THIS FILE AT ALL

User input means that you should get input from the user. This is not passed in as function
parameters. For output to both the console and file you do not need to format numbers to include
commas. (e.g 1000 does NOT need to be written as 1,000). You may assume all the data is correct
and there are no errors relating to the data file (so don't worry about Exceptions or validating input
except where otherwise noted for this assignment).

Non-functional Specifications:

1. Include brief comments in your code identifying yourself, describing the program, and describing

key portions of the code.
2. Assignments are to be done individually and must be your own work. Software may be used to

detect cheating.
3. Use Python coding conventions and good programming techniques, for example:

i. Meaningful variable names
ii. Conventions for naming variables and constants
iii. Use of constants where appropriate
iv. Readability: indentation, white space, consistency

Submit the file in which your classes are defined. The name of the file should be countryGalore.py.
Make sure you attach your python file to your assignment; DO NOT put the code inline in the textbox.

Make sure that you develop your code with Python 3.5 as the interpreter. TAs will not endeavor to fix
code that uses earlier versions of Python.

What You Will Be Marked On:
1. Functional specifications:

 Does the program behave according to specifications?

 Does it run with the main program provided?

 Are your classes created properly?

 Are you using appropriate data structures?

 Is the output according to specifications?
2. Non-functional specifications: as described above
3. Assignment submission: via OWL assignment submission

