Interprocess communication

o Bk~ wbh =

What is a Pipe

Unix System Review
Processes (review)
Pipes

FIFOs

A form of interprocess communication
between processes that have a common
ancestor

It is a one-way (half duplex)
communication channel which can be used
to link processes

A pipe is a generalization of the file idea

— Can use 1I/O functions like read () and
write () to receive and send data

Typical use:

— Pipe created by a process

— Process calls fork()

— Pipe used between parent and child

All systems support half-duplex
— Data flows in only one direction

Many newer systems support full duplex
— Data flows in two directions

For portability, assume only half-duplex

Pipes at the UNIX shell level
— who | wc -1
— gives a count of the number of users logged on

User

UNIX
Kernel

Platform

User’s program User’s program

Library functions Library functions

~, 7

System call interface

Memory management Process management
Network transport File system
services management

¢

CPU, memory, disk, terminals,
network interface, ...

Hardware

#include <sys/types.h>
#include <unistd.h>
pid t fork(void);

» Creates a child process by making a copy
of the parent process

* Both the child and the parent continue
running

Attribute Inherited by child Retained in exec()

PID No Yes

Real PID Yes Yes

Effective PID Yes Depends on setuid bit
Data Copied No

Stack Copied No

Heap Copied No

Program Code Shared No

File Descriptors Copied (file ptr is shared) | Usually

Environment Yes Depends on exec()
Current Directory Yes Yes

Signal Copied Partially

#include <unistd.h>
int pipe(int £d[2]) ;

 Returns O if ok, -1 on error

* Pipe() binds fd[] with two file descriptors
— fd[0] is open for reading
— fd[1] is open for writing
— Qutput of fd[1] is input to fd[0]

0 stdin

1 stdout

2 stderr

3 —
4 —
5

fd

Pipe

#include <stdio.h>
#include <unistd.h> $ a-OUt

#define MSGSIZE 16 /* null */ hello, world #1

char *msgl=“hello, world #1”;

char *msg2=“hello, world #2”; he”O, World #2

char *msg3=“hello, world #3”; hello. world #3
J

int main()

{ >
char inbuf[MSGSIZE] ;
int p[2], i;
if(pipe(p) < 0)

{ /* open pipe */

perror(“pipe”);

exit(1); }
write(p[1l], msgl, MSGSIZE) ;
write(p[1l], msg2, MSGSIZE) ;
write(p[1l], msg3, MSGSIZE) ;

for(i=0; i < 3; i++)
{ /* read pipe */ * pl0] (read)
read(p[0], inbuf, MSGSIZE) ;
printf(“%s\n”, inbuf); } | pl1] (write)
return O0;

}

* Pipes uses FIFO ordering: first-in first-out.

« Read/write amounts do not need to be the
same, but then text will be split differently.

* Pipes are most useful with fork () which
creates an |IPC connection between the
parent and the child (or between the
parents children)

#include <stdio.h>
#include <sys/wait.h>
#include <unistd.h>
#define MSGSIZE 16
char *msgl=“hello, world #1”;
char *msg2=“hello, world #2”;
char *msg3=“hello, world #3”;
int main ()
{
char inbuf[MSGSIZE];
int p[2], i, pid;
if(pipe(p) < 0)
{ /* open pipe */
perror (“pipe”);
exit(1);
}
if((pid = fork()) < 0)
{
perror(“fork”);
exit(2);
}

$ a.out
else if(pid > 0) /* parent */ hello, world #1

{
write(p[l], msgl, MSGSIZE); he”O, world #2

write(p[1l], msg2, MSGSIZE) ; heIIo, world #3
write(p[1], msg3, MSGSIZE); 9
wait((int *) 0);
}
else if(pid == 0) /* child */
{
for(i=0; i < 3; i++)
{
read(p[0], inbuf, MSGSIZE) ;
printf(“$s\n”, inbuf);

}
} pl0] (read)

return 0;

) 4/+\>
| |l

pl1] (write)

0 stdin
1 stdout
2 stderr
> \
4
S
Parent

Pipe

stdin

stdout

stderr

>

p\wm-xo

/

Child

* Notice that both parent and child can read/write
to the pipe

* Possible to have multiple readers/writers
attached to a pipe
— Can causes confusion

» Best style is to close links you do not need

— l.e, we close the read end in one process and the
write end in the other process

— For our example, the read end of the parent and the
write end of the child

#include <stdio.h>
#include <sys/wait.h>
#include <unistd.h>
#define MSGSIZE 16
char *msgl=“hello, world #1”;
char *msg2=“hello, world #2”;
char *msg3=“hello, world #3”;
int main ()
{
char inbuf[MSGSIZE];
int p[2], i, pid;
if(pipe(p) <0)
{ /* open pipe */
perror(“pipe”);
exit(1);
}
if((pid = fork()) < 0)
{
perror(“fork”);
exit(2);
}

else J;.f(pid > 0) /* parent */ $ a.out
close(p[0]); /* read link */ heIIo, world #1
write(p[l], msgl, MSGSIZE); hello, world #2

write(p[1l], msg2, MSGSIZE);
write(p[1l], msg3, MSGSIZE); gello’ world #3

wait((int *) 0);
}
else if(pid == 0) /* child */

{

close(p[1l]); /* write link */

for(i=0; i < 3; i++)
{
read(p[0], inbuf, MSGSIZE) ;
printf(“%$s\n”, inbuf);
}

} p[0] (read)

return O;

} S 0y
| X"

pl1] (write)

0 stdin
1 stdout
2 stderr
3 X
4
S
Parent

0 stdin

1 stdout

2 stderr

3 v
T X

Every pipe has a size limit

— POSIX minimum is 512 bytes (most systems makes this figure
larger ... for Solaris it is 5120 bytes)

read () blocks if pipe is empty and there is a write
link open to that pipe

— Close write links or read() will never return

read () from a pipe whose write () end is closed
and is empty returns 0 (indicates EOF)

write () to a pipe with no read() ends returns -1 and
generates SIGPIPE and errno is set to EPIPE

write () blocks if the pipe is full or there is not
enough room to support the write () .
— May block in the middle of a write()

« Since awrite () can suspend in the middle of its output then
output from multiple writers may be mixed up (interleaved).

<“Rich is great”

“Rich smells bad”

* \
| reader

“It was a bad day”

* Inlimits.h, the constant PIPE BUF (512-4096) gives the
maximum number of bytes that can be output by a write ()
without any chance of interleaving

« Use PIPE BUF if there are to be multiple writers in your code

 Problem:
— Sometimes you want to prevent read () and
write () from blocking.
* Goals:
— want to return an error code instead

— want to poll several pipes in turn until one has
data

 Approaches:

— Use fstat() on the pipe to get the number of
characters in pipe (caveat: multiple readers may
give a race condition)

— Use fcntl() on the pipe and set it to O _ NONBLOCK

#include <sys/types.h>
#include <unistd.h>
#include <fcntl.h>

if(fcntl(£4d, F _SETFL, O NONBLOCK) < 0)
perror (“fcntl”) ;

* Non-blocking write: On a write-only file descriptor, £d, future
writes will never block

— Instead return immediately with a -1 and set errno to EAGAIN

* Non-blocking read: On a read-only file descriptor, £d, future
reads will never block

— return -1 and set errno to EAGAIN or return 0 if pipe is empty (or
closed)

« Child writes “hello” to parent every 3 seconds (3 times).
 Parent does a non-blocking read each second.

p[0] (read)

“Hello”

“Hello”
@ ER \

p[1] (write)

#include <unistd.h>
#include <fcntl.h>
#include <errno.h>
#include <stdio.h>
#include <stdlib.h>
#define MSGSIZE 6

char *msgl=“hello”;

void parent read(int p[]);
void child write(int p[]);

int main ()
{
int pfd[2];
if(pipe(pfd) < 0)
{ /* open pipe */
perror (“pipe”):;
exit(1);

if(fcentl(p£d[0], F SETFL, O NONBLOCK) < 0)
{ /* read non-blocking */
perror(“fcntl”);
exit(2);
}
switch(fork ())
{
case -1: /* error */
perror (“fork”) ;
exit(3);
case 0: /* child */
child write(pfd);
break;
default: /* parent */
parent read(pfd);
break;

}

return 0;

}

void parent read(int p[])
{
int nread, done = 0O;
char buf[MSGSIZE] ;
close(p[l]); /* write link */
while('done)

{
nread = read(p[0], buf, MSGSIZE) ;

switch(nread)

{
case -1:
if(errno == EAGAIN)
{
printf (“ (pipe empty) \n”) ;
sleep(1);
break;

}

else
{
perror(“read”) ;
exit(4) ;
}
case 0:
/* pipe has been closed */
printf("End conversation\n");
close(p[0]); /* read £d4d */
exit (0) ;
default: /* text read */
printf("MSG=%s\n", buf);
} /* switch */
} /* while */
} /* parent read */

void child write(int p[])

{ $ a.out

int i;

close(p[0]); /* read link */ (pipe empty)

for(i =0; i < 3; i++) (pipe empty)
{ (pipe empty)
write(p[l], msgl, MSGSIZE) ;
sleep(3); (pipe empty)
} (pipe empty)

close(p[l]); /* write link */ (pipe empty)

}

(pipe empty)
(pipe empty)
(pipe empty)

nd conversation

=
$

Processes using a pipe must come from a
common ancestor:

— e.g. parent and child

— cannot create general servers like print spoolers
or network control servers since unrelated
processes cannot use it

Pipes are not permanent

— they disappear when the process terminates
Pipes are sometimes one-way:

— makes fancy communication harder to code
Pipes do not work over a network

« Similar to pipes (as far as read/write
are concerned, e.g. FIFO channels), but
with some additional advantages:

— Unrelated processes can use a FIFO.

— A FIFO can be created separately from the
processes that will use it.

— FIFOs look like files:

- have an owner, size, access permissions
* open, close, delete like any other file
* permanent until deleted with rm

 UNIX mkfifo command:

$ mkfifo fifo1

* On older UNIXs (original ATT UNIX), use
mknod.:

$ mknod fifo1 p
« Use 1s to get information:

S 1s -1 fifol
pPrw————-——- 1 rhurley staff 0 Jul 3 12:02 fifol

 FIFOs can be read and written using standard UNIX
commands connected via “<“ and “>” (a commands
input or output)

 |If there are no writers then a read:
— e.g. cat < fifol

will block until there is 1 or more writers.

 |If there are no readers then a write:
— e.g. 1s -1 > fifol

will block until there is 1 or more readers

$ cat < fifol &

[1] 22341

S 1s -1 > fifol; wait

total 17

prw-rw-r-- 1 rhurley staff 0 Jul 3 12:15 fifol
[1] Done cat < fifol

$

1. Output of 1s -1 is written down the FIFO
2. Waiting cat reads from the FIFO and display the output

3. cat exits since read returns 0 (the FIFO is not open for writing
anymore and 0 is returned as EOF)

wait - causes the shell to wait until cat exits before redisplaying the
prompt

#include <sys/types.h>
#include <sys/stat.h>

int mkfifo(const char *pathname, mode t mode);

 Returns 0 if OK, -1 on error.

« mode is the same as for open () -and is
modifiable by the process’ umask value

* Once created, a FIFO must be opened using
open ()

1. Used by shell commands to pass data
from one shell pipeline to another
without using temporary files.

2. Create client-server applications on a
single machine.

* Server contacted by numerous clients via a
well-known FIFO

@ . well known
write FIFO
read
YY) > >

 How are replies from the server sent back to
each client?

Problem: A single FIFO (as before) is not enough.

Solution: Each client send its PID as part of its
message. Which it then uses to create a special

‘reply’ FIFO for each client
— e.g. /tmp/servl .XXXX where XXXX

the clients process ID

read replies

Client specific
FIEO

<

write

requests well known
FIFO

read requests

is replaced with

write
replies

>

write
requests

read replies

(__

Client specific
FIFO

write
replies

 The server does not know if a client is still
alive
— may create FIFOs which are never used

— client terminates before reading the response
(leaving FIFO with one writer and no reader)

« Each time number of clients goes from 1
client to 0 the server reads an EOF on the
well-known FIFO, if it is set to read-only.

— Common trick is to have the server open the FIFO
as read-write

* First we must see how to create, open
and read a FIFO from within C.

* Clients will write in non-blocking mode,
so they do not have to wait for the
server process to start.

#include <sys/types.h>
#include <sys/stat.h>

int mkfifo (const char *pathname, mode t mode) ;

* Creates a FIFO file named by pathname
 The FIFO will be given mode permissions (0666)
 Can be modified using the process’ umask value

#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>

fd = open(“fifol”, O WRONLY);

* A FIFO can be opened with open ()
(most I/O functions work with pipes).

 An open () call for writing will block until
another process opens the FIFO for reading.

— this behavior is not suitable for a client who does
not want to wait for a server process before
sending data.

* An open () call for reading will block until
another process opens the FIFO for writing.

— this behavior is not suitable for a server which
wants to poll the FIFO and continue if there are no
readers at the moment.

if (£fd = open(“fifol”, O WRONLY | O NONBLOCK)) < 0)
perror (“‘open FIFO”) ;

« opens the FIFO for writing

* returns -1 and errno is set to ENXIO if
there are no readers, instead of blocking.

 Later write () calls will also not block.

* implement a message system

» exploits the fact that reads/writes to pipes/FIFOs
are atomic

- if fixed-sized messages are passed, individual messages
will stay intact even with concurrent senders

well known

. FIFO: serv_fifo
send _msg A)

“Good day”

« recv_msg can read and write;

— otherwise the program would block at the open call

— also avoids responding to reading a “return of 0” when the
number of send msg processes goes from 1 to 0 (and the

FIFO is empty) O_RDWR - ensures that at least one process
has the FIFO open for writing (i.e. recv_msqg itself) so read

will always block until data is written to the FIFO

- send msg sends fixed-size messages of length
PIPE BUF to avoid interleaving problems with other
send msg calls. It uses non-blocking.

- serv_fifo is globally known, and previously
created withmkfifo

#include
#include
#include
#include
#include
#include
#include

<stdio.h>
<sys/types.h>
<sys/stat.h>
<unistd.h>
<fcntl.h>
<string.h>
<limits.h>

#define SF "serv fifo"

void make msg(char mb[], char input[]);
int main(int argc, char *argv|[])
{
int £d, i;
char msgbuf[PIPE BUF];
if(arge < 2)
{

printf("Usage: send-msg msg...\n");
exit(1),

}
if((fd = open(SF, O WRONLY | O NONBLOCK)) < 0)

{ perror(SF); exit(1);.3
for(i = 1; i < argc; i++)
{

if(strlen(argv[i]) > PIPE BUF - 2)
printf("Too long: %s\n", argv[i])

else

{
make msg(msgbuf, argv[i]);

write(fd, msgbuf, PIPE BUF) ;

}

}
close(£4);
return O;
} /* end main */

/* put input message into mb[] with '$' and padded with spaces */
void make msg(char mb[], char input[])

{

int i;

for(i = 1; i < PIPE BUF-1; i++)
mb[i] = ' ';

mb[i] = '\0';

i=20;

while(input[i] !'= ‘\0’)

{
mb[i] = input[i];
i++;
}
mb[i] = '$§';
} /* make msg */

void print msg(char mb[]);
int main(int argc, char *argv[])
{
int £fd, I, done = 0;
char msgbuf [PIPE BUF];
if (mkfifo (SF,0666) == -1)
if (errno '= EEXIST)
{ perror("receiver: mkfifo") ;
exit(1); }
if((fd = open(SF, O RDWR)) < 0)
{ perror(SF);
exit(1); }
while('done)
{
if(read(fd, msgbuf, PIPE BUF) < 0)
{
perror("read");
exit(1),
}
print msg(msgbuf);
}
close(£4);
return O;
} /* end main */

/* print mb[] up to the 'S$' marker */

void print msg(char mb[])
{

int 1 = 0;
printf("Msg: ");
while(mb[i] !'= '$')

{
putchar(mb[i]),
i++;
}
putchar('\n');
} /* make msg */

$ send_msg "Hello"

serv_fifo: No such file or directory
$ recv_msg &

[1] 8323

$ send_msg "Hello"

$ Msg: Hello

send_msg "Nice to see you"

Msg: Nice to see you

$ send_msg "This" "is" "four
Msg: This

Msg: is

Msg: four

Msg: messages

$ kill -9 %1

[1] Killed recv._msg

messages”

