
UNIX Systems ProgrammingUNIX Systems Programming

Interprocess communication

OverviewOverview

1. What is a Pipe

2. Unix System Review

3. Processes (review)

4. Pipes4. Pipes

5. FIFOs

1. Pipes1. Pipes
• A form of interprocess communication

between processes that have a common
ancestor

• It is a one-way (half duplex)
communication channel which can be used
to link processesto link processes

• A pipe is a generalization of the file idea
– Can use I/O functions like read() and
write() to receive and send data

• Typical use:
– Pipe created by a process
– Process calls fork()
– Pipe used between parent and child

Differences between versionsDifferences between versions

• All systems support half-duplex
– Data flows in only one direction

• Many newer systems support full duplex
– Data flows in two directions– Data flows in two directions

• For portability, assume only half-duplex

• Pipes at the UNIX shell level
– who | wc -1

– gives a count of the number of users logged on

A UNIX SystemA UNIX System

User’s program

Library functions

User’s program

Library functions
User

System call interface

CPU, memory, disk, terminals,
network interface, ...

Memory management

Network transport
services

Process management

File system
management

Hardware

UNIX
Kernel

Platform

System call interface

Review: fork()Review: fork()

#include <sys/types.h>

#include <unistd.h>

pid_t fork(void);

• Creates a child process by making a copy
of the parent process

• Both the child and the parent continue
running

Context used by child and exec()Context used by child and exec()

Attribute Inherited by child Retained in exec()

PID No Yes

Real PID Yes Yes

Effective PID Yes Depends on setuid bit

Data Copied NoData Copied No

Stack Copied No

Heap Copied No

Program Code Shared No

File Descriptors Copied (file ptr is shared) Usually

Environment Yes Depends on exec()

Current Directory Yes Yes

Signal Copied Partially

Programming with PipesProgramming with Pipes

#include <unistd.h>

int pipe(int fd[2]);

• Returns 0 if ok, -1 on error

• Pipe() binds fd[] with two file descriptors• Pipe() binds fd[] with two file descriptors

– fd[0] is open for reading

– fd[1] is open for writing

– Output of fd[1] is input to fd[0]

After the pipe() callAfter the pipe() call

0 stdin

1 stdout

2 stderr

3

4

5 3 4

fd 0 1

Pipe

Example: pipeExample: pipe--yourself.cyourself.c
#include <stdio.h>
#include <unistd.h>
#define MSGSIZE 16 /* null */
char *msg1=“hello, world #1”;
char *msg2=“hello, world #2”;
char *msg3=“hello, world #3”;
int main()

{
char inbuf[MSGSIZE];
int p[2], i;

$ a.out
hello, world #1
hello, world #2
hello, world #3
$

int p[2], i;
if(pipe(p) < 0)

{ /* open pipe */
perror(“pipe”);
exit(1); }

write(p[1], msg1, MSGSIZE);
write(p[1], msg2, MSGSIZE);
write(p[1], msg3, MSGSIZE);
for(i=0; i < 3; i++)

{ /* read pipe */
read(p[0], inbuf, MSGSIZE);
printf(“%s\n”, inbuf); }

return 0;
}

process
p[0] (read)

p[1] (write)

Things to NoteThings to Note

• Pipes uses FIFO ordering: first-in first-out.

• Read/write amounts do not need to be the
same, but then text will be split differently.same, but then text will be split differently.

• Pipes are most useful with fork() which
creates an IPC connection between the
parent and the child (or between the
parents children)

Example: pipe_fork.cExample: pipe_fork.c
#include <stdio.h>
#include <sys/wait.h>
#include <unistd.h>
#define MSGSIZE 16
char *msg1=“hello, world #1”;
char *msg2=“hello, world #2”;
char *msg3=“hello, world #3”;
int main()

{{
char inbuf[MSGSIZE];
int p[2], i, pid;
if(pipe(p) < 0)

{ /* open pipe */
perror(“pipe”);
exit(1);
}

if((pid = fork()) < 0)
{
perror(“fork”);
exit(2);
}

Cont’dCont’d
else if(pid > 0) /* parent */

{
write(p[1], msg1, MSGSIZE);
write(p[1], msg2, MSGSIZE);
write(p[1], msg3, MSGSIZE);
wait((int *) 0);
}

else if(pid == 0) /* child */

$ a.out
hello, world #1
hello, world #2
hello, world #3
$

else if(pid == 0) /* child */
{
for(i=0; i < 3; i++)

{
read(p[0], inbuf, MSGSIZE);
printf(“%s\n”, inbuf);
}

}
return 0;
} parent

p[0] (read)

p[1] (write)

child

Another lookAnother look

0 stdin

1 stdout

2 stderr

3

0 stdin

1 stdout

2 stderr

33

4

5

3

4

5

Parent ChildPipe

Things to NoteThings to Note

• Notice that both parent and child can read/write
to the pipe

• Possible to have multiple readers/writers
attached to a pipeattached to a pipe
– Can causes confusion

• Best style is to close links you do not need
– i.e, we close the read end in one process and the

write end in the other process

– For our example, the read end of the parent and the
write end of the child

Example: pipe_fork_close.cExample: pipe_fork_close.c
#include <stdio.h>
#include <sys/wait.h>
#include <unistd.h>
#define MSGSIZE 16
char *msg1=“hello, world #1”;
char *msg2=“hello, world #2”;
char *msg3=“hello, world #3”;
int main()

{{
char inbuf[MSGSIZE];
int p[2], i, pid;
if(pipe(p) < 0)

{ /* open pipe */
perror(“pipe”);
exit(1);
}

if((pid = fork()) < 0)
{
perror(“fork”);
exit(2);
}

Cont’dCont’d
else if(pid > 0) /* parent */

{
close(p[0]); /* read link */
write(p[1], msg1, MSGSIZE);
write(p[1], msg2, MSGSIZE);
write(p[1], msg3, MSGSIZE);
wait((int *) 0);
}

else if(pid == 0) /* child */
{

$ a.out
hello, world #1
hello, world #2
hello, world #3
$

{
close(p[1]); /* write link */
for(i=0; i < 3; i++)

{
read(p[0], inbuf, MSGSIZE);
printf(“%s\n”, inbuf);
}

}
return 0;
}

parent

p[0] (read)

p[1] (write)

child
X

X

Another lookAnother look

0 stdin

1 stdout

2 stderr

3 X

0 stdin

1 stdout

2 stderr

33 X

4

5

3

4 X

5

Parent ChildPipe

Rules of PipesRules of Pipes
• Every pipe has a size limit

– POSIX minimum is 512 bytes (most systems makes this figure
larger … for Solaris it is 5120 bytes)

• read() blocks if pipe is empty and there is a write
link open to that pipe
– Close write links or read() will never return

• read() from a pipe whose write() end is closed
and is empty returns 0 (indicates EOF)

• write() to a pipe with no read() ends returns -1 and
generates SIGPIPE and errno is set to EPIPE

• write() blocks if the pipe is full or there is not
enough room to support the write().
– May block in the middle of a write()

Several WritersSeveral Writers
• Since a write() can suspend in the middle of its output then

output from multiple writers may be mixed up (interleaved).

writer

writer

“Rich is great”

“It smells good”
“Rich smells bad”

readerwriter

writer

“It smells good”

“It was a bad day”

• In limits.h, the constant PIPE_BUF (512-4096) gives the
maximum number of bytes that can be output by a write()
without any chance of interleaving

• Use PIPE_BUF if there are to be multiple writers in your code

NonNon--blocking read() & write()blocking read() & write()
• Problem:

– Sometimes you want to prevent read() and
write()from blocking.

• Goals:
– want to return an error code instead– want to return an error code instead
– want to poll several pipes in turn until one has

data

• Approaches:
– Use fstat() on the pipe to get the number of

characters in pipe (caveat: multiple readers may
give a race condition)

– Use fcntl() on the pipe and set it to O_NONBLOCK

Using Using fcntlfcntl()()
#include <sys/types.h>
#include <unistd.h>
#include <fcntl.h>

:
if(fcntl(fd, F_SETFL, O_NONBLOCK) < 0)

perror(“fcntl”);
::

• Non-blocking write: On a write-only file descriptor, fd, future
writes will never block
– Instead return immediately with a -1 and set errno to EAGAIN

• Non-blocking read: On a read-only file descriptor, fd, future
reads will never block
– return -1 and set errno to EAGAIN or return 0 if pipe is empty (or

closed)

Example: NonExample: Non--blocking with blocking with --1 return1 return

• Child writes “hello” to parent every 3 seconds (3 times).

• Parent does a non-blocking read each second.

p[0] (read)

parent

p[0] (read)

p[1] (write)

child

“Hello”
“Hello”

“Hello”

Example: Example: pipe_nonblocking.cpipe_nonblocking.c
#include <unistd.h>
#include <fcntl.h>
#include <errno.h>
#include <stdio.h>
#include <stdlib.h>
#define MSGSIZE 6
char *msg1=“hello”;

void parent_read(int p[]);
void child_write(int p[]);

int main()
{
int pfd[2];
if(pipe(pfd) < 0)

{ /* open pipe */
perror(“pipe”);
exit(1);

}

main Cont’dmain Cont’d
if(fcntl(pfd[0], F_SETFL, O_NONBLOCK) < 0)

{ /* read non-blocking */
perror(“fcntl”);
exit(2);
}

switch(fork())
{
case -1: /* error */

perror(“fork”);perror(“fork”);
exit(3);

case 0: /* child */
child_write(pfd);
break;

default: /* parent */
parent_read(pfd);
break;

}
return 0;
}

void void parent_readparent_read()()
void parent_read(int p[])

{
int nread, done = 0;
char buf[MSGSIZE];
close(p[1]); /* write link */
while(!done)

{
nread = read(p[0], buf, MSGSIZE);nread = read(p[0], buf, MSGSIZE);
switch(nread)

{
case -1:

if(errno == EAGAIN)
{
printf(“(pipe empty)\n”);
sleep(1);
break;
}

Cont’dCont’d

else
{
perror(“read”);
exit(4);
}

case 0:
/* pipe has been closed */
printf("End conversation\n");printf("End conversation\n");
close(p[0]); /* read fd */
exit(0);

default: /* text read */
printf("MSG=%s\n", buf);

} /* switch */
} /* while */

} /* parent_read */

void child_write()void child_write()
void child_write(int p[])

{
int i;
close(p[0]); /* read link */
for(i = 0; i < 3; i++)

{
write(p[1], msg1, MSGSIZE);
sleep(3);

$ a.out
MSG=hello
(pipe empty)
(pipe empty)
(pipe empty)
MSG=hello
(pipe empty)sleep(3);

}
close(p[1]); /* write link */
}

(pipe empty)
(pipe empty)
(pipe empty)
MSG=hello
(pipe empty)
(pipe empty)
(pipe empty)
End conversation
$

Limitations of PipesLimitations of Pipes

• Processes using a pipe must come from a
common ancestor:
– e.g. parent and child
– cannot create general servers like print spoolers

or network control servers since unrelated
processes cannot use itprocesses cannot use it

• Pipes are not permanent
– they disappear when the process terminates

• Pipes are sometimes one-way:
– makes fancy communication harder to code

• Pipes do not work over a network

What are FIFOs/Named Pipes?What are FIFOs/Named Pipes?

• Similar to pipes (as far as read/write
are concerned, e.g. FIFO channels), but
with some additional advantages:
– Unrelated processes can use a FIFO.
– A FIFO can be created separately from the

processes that will use it.
– FIFOs look like files:

• have an owner, size, access permissions
• open, close, delete like any other file
• permanent until deleted with rm

Creating a FIFOCreating a FIFO

• UNIX mkfifo command:

$ mkfifo fifo1

• On older UNIXs (original ATT UNIX), use
mknod:mknod:

$ mknod fifo1 p

• Use ls to get information:

$ ls -l fifo1

prw------- 1 rhurley staff 0 Jul 3 12:02 fifo1

Using FIFOs: FIFO BlockingUsing FIFOs: FIFO Blocking

• FIFOs can be read and written using standard UNIX
commands connected via “<“ and “>” (a commands
input or output)

• If there are no writers then a read:• If there are no writers then a read:
– e.g. cat < fifo1

will block until there is 1 or more writers.

• If there are no readers then a write:
– e.g. ls -l > fifo1

will block until there is 1 or more readers

Reader / Writer ExampleReader / Writer Example
$ cat < fifo1 &
[1] 22341
$ ls -l > fifo1; wait
total 17
prw-rw-r-- 1 rhurley staff 0 Jul 3 12:15 fifo1
[1] Done cat < fifo1
$$

1. Output of ls -l is written down the FIFO

2. Waiting cat reads from the FIFO and display the output

3. cat exits since read returns 0 (the FIFO is not open for writing
anymore and 0 is returned as EOF)

wait - causes the shell to wait until cat exits before redisplaying the
prompt

Creating a FIFO in CCreating a FIFO in C

#include <sys/types.h>

#include <sys/stat.h>

int mkfifo(const char *pathname, mode_t mode);

• Returns 0 if OK, -1 on error.
• mode is the same as for open() - and is

modifiable by the process’ umask value

• Once created, a FIFO must be opened using
open()

Two Main Uses of FIFOsTwo Main Uses of FIFOs

1. Used by shell commands to pass data
from one shell pipeline to another
without using temporary files.

2. Create client-server applications on a
single machine.

ClientClient--Server ApplicationsServer Applications

• Server contacted by numerous clients via a
well-known FIFO

client write

... read

well known
FIFO

• How are replies from the server sent back to
each client?

client

server...
write

read

ClientClient--Server FIFO ApplicationServer FIFO Application
• Problem: A single FIFO (as before) is not enough.

• Solution: Each client send its PID as part of its
message. Which it then uses to create a special
‘reply’ FIFO for each client
– e.g. /tmp/serv1.XXXX where XXXX is replaced with

the clients process IDthe clients process ID

client

server

client write
requests

... read requests

write
requests

well known
FIFO

read replies

read replies

write
replies

write
replies

Client specific
FIFO

Client specific
FIFO

ProblemsProblems

• The server does not know if a client is still
alive
– may create FIFOs which are never used
– client terminates before reading the response

(leaving FIFO with one writer and no reader)

• Each time number of clients goes from 1
client to 0 the server reads an EOF on the
well-known FIFO, if it is set to read-only.
– Common trick is to have the server open the FIFO

as read-write

Programming ClientProgramming Client--serverserver
ApplicationsApplications

• First we must see how to create, open
and read a FIFO from within C.

• Clients will write in non-blocking mode,
so they do not have to wait for the
server process to start.

Creating a FIFOCreating a FIFO
#include <sys/types.h>

#include <sys/stat.h>

:

int mkfifo(const char *pathname, mode_t mode);

• Creates a FIFO file named by pathname

• The FIFO will be given mode permissions (0666)

• Can be modified using the process’ umask value

Opening FIFOsOpening FIFOs

#include <sys/types.h>

#include <sys/stat.h>

#include <fcntl.h>

:

fd = open(“fifo1”, O_WRONLY);fd = open(“fifo1”, O_WRONLY);

:

• A FIFO can be opened with open()
(most I/O functions work with pipes).

Blocking Blocking open()open()

• An open() call for writing will block until
another process opens the FIFO for reading.
– this behavior is not suitable for a client who does

not want to wait for a server process before
sending data.sending data.

• An open()call for reading will block until
another process opens the FIFO for writing.
– this behavior is not suitable for a server which

wants to poll the FIFO and continue if there are no
readers at the moment.

NonNon--blocking blocking open()open()

if (fd = open(“fifo1”, O_WRONLY | O_NONBLOCK)) < 0)

perror(“open FIFO”);

• opens the FIFO for writing

• returns -1 and errno is set to ENXIO if • returns -1 and errno is set to ENXIO if
there are no readers, instead of blocking.

• Later write() calls will also not block.

Example: send_msg, recv_msgExample: send_msg, recv_msg
• implement a message system

• exploits the fact that reads/writes to pipes/FIFOs
are atomic

• if fixed-sized messages are passed, individual messages
will stay intact even with concurrent senders

send_msg “Hello”

...
“Good day”send_msg

recv_msg

well known
FIFO: serv_fifo

will stay intact even with concurrent senders

Notes:Notes:
• recv_msg can read and write;

– otherwise the program would block at the open call

– also avoids responding to reading a “return of 0” when the
number of send_msg processes goes from 1 to 0 (and the
FIFO is empty) O_RDWR - ensures that at least one process
has the FIFO open for writing (i.e. recv_msg itself) so read
will always block until data is written to the FIFOwill always block until data is written to the FIFO

• send_msg sends fixed-size messages of length
PIPE_BUF to avoid interleaving problems with other
send_msg calls. It uses non-blocking.

• serv_fifo is globally known, and previously
created with mkfifo

Header for filesHeader for files
#include <stdio.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <unistd.h>
#include <fcntl.h>
#include <string.h>
#include <limits.h>#include <limits.h>
#define SF "serv_fifo"

send_msg.csend_msg.c
void make_msg(char mb[], char input[]);
int main(int argc, char *argv[])

{
int fd, i;
char msgbuf[PIPE_BUF];
if(argc < 2)

{
printf("Usage: send-msg msg...\n");
exit(1);
}

if((fd = open(SF, O_WRONLY | O_NONBLOCK)) < 0)
{ perror(SF); exit(1); }{ perror(SF); exit(1); }

for(i = 1; i < argc; i++)
{
if(strlen(argv[i]) > PIPE_BUF - 2)

printf("Too long: %s\n", argv[i]);
else

{
make_msg(msgbuf, argv[i]);
write(fd, msgbuf, PIPE_BUF);
}

}
close(fd);
return 0;
} /* end main */

send_msg.c cont’dsend_msg.c cont’d

/* put input message into mb[] with '$‘ and padded with spaces */
void make_msg(char mb[], char input[])

{
int i;
for(i = 1; i < PIPE_BUF-1; i++)

mb[i] = ' ';
mb[i] = '\0';
i = 0;
while(input[i] != ‘\0’)

{
mb[i] = input[i];
i++;
}

mb[i] = '$';
} /* make_msg */

recv_msg.crecv_msg.c
void print_msg(char mb[]);
int main(int argc, char *argv[])

{
int fd, I, done = 0;
char msgbuf[PIPE_BUF];
if(mkfifo(SF,0666) == -1)

if(errno != EEXIST)
{ perror("receiver: mkfifo");
exit(1); }

if((fd = open(SF, O_RDWR)) < 0)
{ perror(SF);{ perror(SF);
exit(1); }

while(!done)
{
if(read(fd, msgbuf, PIPE_BUF) < 0)

{
perror("read");
exit(1);
}

print_msg(msgbuf);
}

close(fd);
return 0;
} /* end main */

recv_msg.c cont’drecv_msg.c cont’d
/* print mb[] up to the '$' marker */
void print_msg(char mb[])

{
int i = 0;
printf("Msg: ");
while(mb[i] != '$')

{
putchar(mb[i]);

$ send_msg "Hello"
serv_fifo: No such file or directory
$ recv_msg &
[1] 8323
$ send_msg "Hello"putchar(mb[i]);

i++;
}

putchar('\n');
} /* make_msg */

$ send_msg "Hello"
$ Msg: Hello
send_msg "Nice to see you"
Msg: Nice to see you
$ send_msg "This" "is" "four" "messages"
Msg: This
Msg: is
Msg: four
Msg: messages
$ kill -9 %1
[1] Killed recv_msg

