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Socket ProgrammingSocket Programming

 What is a socket?

 Using sockets
—Types (Protocols)

—Associated functions

—Styles
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—Styles



What is a socketWhat is a socket

Socket API
 introduced in BSD4.1 

UNIX, 1981

 Two types of sockets an interface (a “door”) 

socket
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 Two types of sockets
—connection-oriented

—connectionless

an interface (a “door”) 
into which one

application process can 
both send and 

receive messages to/from 
another (remote or 

local) application process



Two essential types of socketsTwo essential types of sockets
 SOCK_STREAM

— a.k.a. TCP

— reliable delivery

— in-order guaranteed

— connection-oriented

— bidirectional

 SOCK_DGRAM

— a.k.a. UDP

— unreliable delivery

— no order guarantees

— no notion of “connection” – App 
indicates destination for each packet

— can send or receive
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Socket Creation in C: socketSocket Creation in C: socket
 int s = socket(domain, type, protocol);

—s: socket descriptor, an integer (like a file descriptor)

—domain: integer, communication domain
 AF_INET (IPv4 protocol) – typically used
 AF_INET6 (IPv6 protocol)
 AF_UNIX or AF_LOCAL – intra-machine communication

—type: communication type
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—type: communication type
 SOCK_STREAM: reliable, 2-way, connection-based service
 SOCK_DGRAM: unreliable, connectionless,
 other values: need root permission, rarely used, or obsolete

—protocol: specifies a particular protocol to be used with the socket. 
Normally only a single protocol exists to support a particular socket 
type within a given protocol family, in which case protocol can be 
specified as 0.

 NOTE: socket call does not specify where data will be coming 
from, nor where it will be going to – it just creates the interface!



A SocketA Socket--eye view of the Interneteye view of the Internet

odin.trentu.ca

(192.197.151.70)

church.cse.ogi.edu

www.google.com

(74.125.226.145)
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 Each host machine has an IP address

 When a packet arrives at a host

church.cse.ogi.edu

(129.95.50.2, 129.95.40.2)



PortsPorts

Port 0

Port 1

Port 65535

 Each host has 65,536 ports

 Some ports are reserved for 
specific apps
— 20 & 21: FTP

— 22: SSH

— 23: Telnet
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— 23: Telnet

— 25: SMTP

— 53: DNS

— 80: HTTP

— 110: POP3

— 143: IMAP

— 443: HTTPS

— 465: SMTPS

 A socket provides an interface 
to send data to/from the 
network through a port



Addresses, Ports and SocketsAddresses, Ports and Sockets

 Like apartments and mailboxes
—You are the Application

—Your home address is the IP address

—Your mailbox is the port

—The Post Office is the network
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—The Post Office is the network

 Q: How do you choose which port to connects a socket?



#include <netinet/in.h>

/* Internet address structure */
struct in_addr {

u_long s_addr; /* 32-bit IPv4 address */
}; /* network byte ordered */

Internet Addressing Data StructureInternet Addressing Data Structure
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/* Socket address, Internet style. */
struct sockaddr_in {

u_char  sin_family; /* Address Family */
u_short sin_port; /* UDP or TCP Port# */

/* network byte ordered */
struct in_addr sin_addr; /* Internet Address */
char    sin_zero[8]; /* unused */

};

 sin_family = AF_INET selects Internet address family



Byte OrderingByte Ordering
union {

u_int32_t addr;  /* 4 bytes address */
char c[4];

} un;
/* 128.2.194.95 */
un.addr = 0x8002c25f;
/* c[0] = ? */
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Big Endian
—Sun Solaris, PowerPC, ...

Little Endian
—i386, alpha, ...

Network byte order = Big Endian

128 2 194 95

c[0] c[1] c[2] c[3]

95 194 2 128



Address and port byteAddress and port byte--orderingordering
 Address and port are stored as integers

—u_short sin_port; (16 bit)

— in_addr sin_addr; (32 bit)

struct in_addr {
u_long s_addr;

};
 Problem:

different machines / OS’s use different word orderings
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different machines / OS’s use different word orderings
little-endian: lower bytes first
big-endian: higher bytes first

 these machines may communicate with one another over the 
network

129.95.50.2

129 95 50 2

2.50.95.129

129 95 50 2

Big-Endian
machine

Little-Endian
machine



UNIX’s byteUNIX’s byte--ordering funcsordering funcs

 u_long htonl(u_long x);

 u_short htons(u_short x);

 u_long ntohl(u_long x);

 u_short ntohs(u_short x);

 On big-endian machines, these routines do nothing
 On little-endian machines, they reverse the byte 
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 On little-endian machines, they reverse the byte 
order

 Same code would have worked regardless of endian-
ness of the two machines

129.95.50.2

129 95 50 2

129.95.50.2

129 95 50 2

Big-Endian
machine Little-Endian

machine n
to

h
l

129 95 50 2 12995502



Byte Ordering FunctionsByte Ordering Functions

 Converts between host byte order and network byte order
— ‘h’ = host byte order
— ‘n’ = network byte order
— ‘l’ = long (4 bytes), converts IP addresses
— ‘s’ = short (2 bytes), converts port numbers
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#include <netinet/in.h>

unsigned long int htonl(unsigned long int hostlong);
unsigned short int htons(unsigned short int 
hostshort);
unsigned long int ntohl(unsigned long int netlong);
unsigned short int ntohs(unsigned short int 
netshort);



Web Server

Port 80

 For example: web server

 What does a web server need to 
do so that a web client can 
connect to it?

TCP ServerTCP Server
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TCP

IP

Ethernet Adapter



 Since web traffic uses TCP, the web server must create a socket of type 
SOCK_STREAM (connection-oriented)

int fd; /* socket descriptor */

if((fd = socket(AF_INET, SOCK_STREAM, 0)) < 0) {
perror(“socket”);

Socket I/O: socket()Socket I/O: socket()
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perror(“socket”);
exit(1);

}

 socket returns an integer (socket descriptor)

—fd < 0 indicates that an error occurred

 AF_INET associates a socket with the Internet protocol family

 SOCK_STREAM selects the TCP protocol

 In some Unixes, need to compile with –lsocket -lnsl to link in socket libraries



 A socket can be bound to a port

int fd; /* socket descriptor */
struct sockaddr_in srv; /* used by bind() */

/* create the socket */

srv.sin_family = AF_INET; /* use the Internet addr family */

Socket I/O: bind()Socket I/O: bind()
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srv.sin_port = htons(80); /* bind socket ‘fd’ to port 80*/

/* bind: a client may connect to any of my addresses */
srv.sin_addr.s_addr = htonl(INADDR_ANY);
/* INADDR_ANY – refers to local machine address */

if(bind(fd, (struct sockaddr*) &srv, sizeof(srv)) < 0) {
perror("bind"); exit(1);

}

 Still not quite ready to communicate with a client...



Socket I/O: listen()Socket I/O: listen()

 listen indicates that the server will accept a connection

int fd; /* socket descriptor */
struct sockaddr_in srv; /* used by bind() */

/* 1) create the socket */
/* 2) bind the socket to a port */
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/* 2) bind the socket to a port */

if(listen(fd, 5) < 0) {
perror(“listen”);
exit(1);

}

 Still not quite ready to communicate with a client...



Socket I/O: accept()Socket I/O: accept()

 accept blocks waiting for a connection

int fd; /* socket descriptor */
struct sockaddr_in srv; /* used by bind() */
struct sockaddr_in cli; /* used by accept() */
int newfd; /* returned by accept() */
int cli_len = sizeof(cli); /* used by accept() */
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/* 1) create the socket */
/* 2) bind the socket to a port */
/* 3) listen on the socket */

newfd = accept(fd, (struct sockaddr*) &cli, &cli_len);
if(newfd < 0) {

perror("accept"); exit(1);
}

 accept returns a new socket (newfd) with the same properties as the original 
socket (fd)
—newfd < 0 indicates that an error occurred



Socket I/O: accept() continued...Socket I/O: accept() continued...

struct sockaddr_in cli; /* used by accept() */
int newfd; /* returned by accept() */
int cli_len = sizeof(cli); /* used by accept() */

newfd = accept(fd, (struct sockaddr*) &cli, &cli_len);
if(newfd < 0) {

perror("accept");
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exit(1);
}

 How does the server know which client it is?

—cli.sin_addr.s_addr contains the client’s IP address

—cli.sin_port contains the client’s port number

 Now the server can exchange data with the client by using 
read and write on the descriptor newfd.

 Why does accept need to return a new descriptor?



Connection setupConnection setup

 Passive participant - server
— step 1: listen (for incoming 

requests)

— step 3: accept (a request)

— step 4: data transfer

 Active participant - clients

— step 2: request & establish 
connection

— step 4: data transfer
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 The accepted connection is on a 
new socket

 The old socket continues to 
listen for other active 
participants

Passive Participant
l-socka-sock-1 a-sock-2

Active 1
socket

Active 2
socket



Socket I/O: read()Socket I/O: read()

 read can be used with a socket

 read blocks waiting for data from the client but does not guarantee 
that sizeof(buf) is read

int fd; /* socket descriptor */

21

int fd; /* socket descriptor */
char buf[512]; /* used by read() */
int nbytes; /* used by read() */

/* 1) create the socket */
/* 2) bind the socket to a port */
/* 3) listen on the socket */
/* 4) accept the incoming connection */

if((nbytes = read(newfd, buf, sizeof(buf))) < 0) {
perror(“read”); exit(1);

}



2 Web Clients

TCP ClientTCP Client

 For example: web client

 How does a web client connect to 
a web server?
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TCP

IP

Ethernet Adapter



struct sockaddr_in srv;

srv.sin_addr.s_addr = inet_addr(“128.192.35.50”);

Dealing with IP AddressesDealing with IP Addresses

 IP Addresses are commonly written as strings (“128.192.35.50”), but programs deal 
with IP addresses as integers.

Converting strings to numerical address:
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srv.sin_addr.s_addr = inet_addr(“128.192.35.50”);
if(srv.sin_addr.s_addr == (in_addr_t) -1) {

fprintf(stderr, "inet_addr failed!\n"); exit(1);
}

Converting a numerical address to a string:
struct sockaddr_in srv;
char *t = inet_ntoa(srv.sin_addr);
if(t == 0) {

fprintf(stderr, “inet_ntoa failed!\n”); exit(1);
}



Translating Names to AddressesTranslating Names to Addresses

 Gethostbyname provides interface to DNS
 Additional useful calls

—Gethostbyaddr – returns hostent given sockaddr_in
—Getservbyname

 Used to get service description (typically port number)
 Returns servent based on name
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 Returns servent based on name

#include <netdb.h>

struct hostent *hp; /*ptr to host info for remote*/ 
struct sockaddr_in peeraddr;
char *name = “odin.trentu.ca”;

peeraddr.sin_family = AF_INET; 
hp = gethostbyname(name) 
peeraddr.sin_addr.s_addr = ((struct in_addr*)(hp->h_addr))->s_addr;



Socket I/O: connect()Socket I/O: connect()

 connect allows a client to connect to a server...

int fd; /* socket descriptor */
struct sockaddr_in srv; /* used by connect() */

/* create the socket */

/* connect: use the Internet address family */
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/* connect: use the Internet address family */
srv.sin_family = AF_INET;

/* connect: socket ‘fd’ to port 80 */
srv.sin_port = htons(80);

/* connect: connect to IP Address “192.197.151.70” */
srv.sin_addr.s_addr = inet_addr(“192.197.151.70”);

if(connect(fd, (struct sockaddr*) &srv, sizeof(srv)) < 0) {
perror(”connect"); exit(1);

}



Socket I/O: write()Socket I/O: write()

 write can be used with a socket

int fd; /* socket descriptor */
struct sockaddr_in srv; /* used by connect() */
char buf[512]; /* used by write() */
int nbytes; /* used by write() */
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/* 1) create the socket */
/* 2) connect() to the server */

/* Example: A client could “write” a request to a server */
if((nbytes = write(fd, buf, sizeof(buf))) < 0) {

perror(“write”);
exit(1);

}
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Review: TCP ClientReview: TCP Client--Server Server 
InteractionInteraction

socket()

bind()

listen()

accept()

TCP Server

socket()

TCP Client
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accept()

write()

read()

read()

close()

socket()

connect()

write()

read()

close()

connection establishment

data request

data reply

end-of-file notification



The The bindbind functionfunction

 associates and (can exclusively) reserves a port for use by 
the socket

 int status = bind(sockid, &addrport, size);
—status: error status, = -1 if bind failed

—sockid: integer, socket descriptor
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—sockid: integer, socket descriptor

—addrport: struct sockaddr, the (IP) address and port of the 
machine (address usually set to INADDR_ANY – chooses a local 
address)

—size: the size (in bytes) of the addrport structure

 bind can be skipped for both types of sockets.  



Skipping the Skipping the bindbind

 SOCK_DGRAM:
— if only sending, no need to bind.  The OS finds a port each time the 

socket sends a packet

— if receiving, need to bind
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 SOCK_STREAM:
—destination determined during connection setup

—don’t need to know port sending from (during connection setup, 
receiving end is informed of port) 



Review: TCP ClientReview: TCP Client--Server Server 
InteractionInteraction

socket()

bind()

listen()

accept()

TCP Server

socket()

TCP Client
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accept()

write()

read()

read()

close()

socket()

connect()

write()

read()

close()

connection establishment

data request

data reply

end-of-file notification



Connection setup: Connection setup: listen & acceptlisten & accept
 Called by passive participant
 int status = listen(sock, queuelen);

— status: 0 if listening, -1 if error 
— sock: integer, socket descriptor
— queuelen: integer, # of active participants that can “wait” for a 

connection
— listen is non-blocking: returns immediately
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 int s = accept(sock, &name, &namelen);
— s: integer, the new socket (used for data-transfer)
— sock: integer, the orig. socket (being listened on)
— name: struct sockaddr, address of the active participant
— namelen: sizeof(name): value/result parameter

 must be set appropriately before call
 adjusted by OS upon return

— accept is blocking: waits for connection before returning 



Review: TCP ClientReview: TCP Client--Server Server 
InteractionInteraction

socket()

bind()

listen()

accept()

TCP Server

socket()

TCP Client
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accept()

write()

read()

read()

close()

socket()

connect()

write()

read()

close()

connection establishment

data request

data reply

end-of-file notification



connectconnect callcall

 int status = connect(sock, &name, namelen);
—status: 0 if successful connect, -1 otherwise

—sock: integer, socket to be used in connection

—name: struct sockaddr: address of passive participant

—namelen: integer, sizeof(name)
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—namelen: integer, sizeof(name)

 connect is blocking



Review: TCP ClientReview: TCP Client--Server Server 
InteractionInteraction

socket()

bind()

listen()

accept()

TCP Server

socket()

TCP Client
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accept()

write()

read()

read()

close()

socket()

connect()

write()

read()

close()

connection establishment

data request

data reply

end-of-file notification



Sending / Receiving Data Sending / Receiving Data 
 With a  connection (SOCK_STREAM):

—Use send()/recv() instead of read()/write()

—int count = send(sock, &buf, len, flags);
 count: # bytes transmitted (-1 if error)
 buf: char[], buffer to be transmitted
 len: integer, length of buffer (in bytes) to transmit
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 len: integer, length of buffer (in bytes) to transmit
 flags: integer, special options, usually just 0

—int count = recv(sock, &buf,  len, flags);
 count: # bytes received (-1 if error)
 buf: void[], stores received bytes
 len: # bytes received
 flags: integer, special options, usually just 0

—Calls are blocking [returns only after data is sent (to socket buf) / 
received]



closeclose

 When finished using a socket, the socket should be closed:

 status = close(s);
—status: 0 if successful, -1 if error

—s: the file descriptor (socket being closed)

 Closing a socket
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 Closing a socket
—closes a connection (for SOCK_STREAM)

— frees up the port used by the socket



ConnectionConnection--oriented: Big Pictureoriented: Big Picture

sd=socket(): create socket

bind(sd, …): specify socket address

server client

TCP 
connection setup

listen(sd, …): specify that socket 
sd is a listening socket

socket(): create socket

bind(): specify socket address

connect(): initialize TCP handshake;
return until TCP handshake is done

optional
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connection setup
sd2=accept(sd, …): 

get a connected connection 
from the queue for socket sd;

create a new socket identified by sd2

send()/recv(): do IO on socket sd2

close(sd2): done

send()/recv(): do IO on the socket

close(): done



Connection Example Connection Example -- serverserver
#include <sys/socket.h> /* for socket(), connect(), send(), and recv() */
#include <netinet/in.h>
#include <signal.h>
#include <ctype.h>
void catcher(int sig);
int newfd;
main()

{
int fd;                                        /* socket descriptor */
struct sockaddr_in srv;           /* used by bind() */
struct sockaddr_in cli;            /* used by accept() */
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struct sockaddr_in cli;            /* used by accept() */
int cli_len = sizeof(cli);            /* used by accept() */
int not_done = 1;
char c;
signal(SIGPIPE, catcher);
/* 1) create the socket */
if((fd = socket(AF_INET, SOCK_STREAM, 0)) < 0) {

perror("socket call failed");
exit(1);  }

/* 2) bind the socket to a port */
srv.sin_family = AF_INET; /* use the Internet addr family */
srv.sin_port = htons(1700); /* bind socket 'fd' to port 1700 */
/* bind: a client may connect to any of my addresses */



Connection example Connection example –– server con’tserver con’t

srv.sin_addr.s_addr = htonl(INADDR_ANY);
/* INADDR_ANY - refers to local machine address */
if(bind(fd, (struct sockaddr *) &srv, sizeof(srv)) < 0) {

perror("bind call failed");
exit(1);
}

/* 3) listen on the socket */
if(listen(fd, 5) < 0) {
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if(listen(fd, 5) < 0) {
perror("listen call failed");
exit(1);
}

/* loop looking for messages */
while (not_done)

{
/* 4) accept the incoming connection */
newfd = accept(fd, (struct sockaddr*) &cli, &cli_len);
if(newfd < 0) {

perror("accept call failed");
not_done = 0;
}



Connection example Connection example –– server server con’tcon’t
/* spawn a child to deal with this connection */
if ( fork() == 0)

{
while(recv(newfd, &c, 1, 0) > 0) { /* could use read as well */

c = toupper(c);
send(newfd, &c, 1, 0); /* could use write as well */
}

/* when client is no longer sending, close socket and child */
close(newfd);
exit(0);
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}
else /* parent */

close(newfd);
}

}

/* signal handler in case socket becomes disconnected */
void catcher(int sig)

{
signal(SIGPIPE, catcher);
close(newfd);
exit(0);
}



Connection Example Connection Example -- clientclient
#include <sys/socket.h> /* for socket(), connect(), send(), and recv() */
#include <arpa/inet.h> /* for sockaddr_in and inet_addr() */
#include <netinet/in.h>
#include <signal.h>
main()

{
int fd;                                           /* socket descriptor */
struct sockaddr_in srv;              /* used by connect() */
char c, rc;
int more_data = 1;
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int more_data = 1;
/* 1) create the socket */
if((fd = socket(AF_INET, SOCK_STREAM, 0)) < 0) {

perror("socket call failed");
exit(1);
}

/* 2) connect() to the server */
/* connect: use the Internet address family */
srv.sin_family = AF_INET;
/* connect: socket 'fd' to port 1700 */
srv.sin_port = htons(1700);

/* connect: connect to IP Address '192.197.151.70' - odin */
srv.sin_addr.s_addr = inet_addr("192.197.151.70");



Connection example Connection example –– client client con’tcon’t
if(connect(fd, (struct sockaddr*) &srv, sizeof(srv)) < 0) {

perror("connect call failed"); exit(1);
}

/*  send and receive information with the server */
while (more_data)

{
if(c != '\n') /* ignore the enter at the end of the input */

printf("Input a lower case letter (or 0 to stop) => ");
c = getchar();
if(c != '0') {

if(c != '\n') { /* ignore the enter for processing */
send(fd, &c, 1, 0); /* could use write as well */
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send(fd, &c, 1, 0); /* could use write as well */
if(recv(fd, &rc, 1, 0) > 0) /* could use read as well */

printf("%c\n", rc);
else {

printf("Server has died\n");
close(fd);
exit(1);
}

}
}

else
more_data = 0;

}
exit(0);
}



Connection ExampleConnection Example
 To compile use

— gcc –o server server.c          // some versions need –lsocket –lnsl
— gcc –o client client.c             // some versions need –lsocket –lnsl

 To run, start the server first in the background and then the client(s)
$ server &
$ client
Input a lower case letter (or 0 to stop) => r
R
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R
Input a lower case letter (or 0 to stop) => i
I
Input a lower case letter (or 0 to stop) => c
C
Input a lower case letter (or 0 to stop) => h
H
Input a lower case letter (or 0 to stop) => 0
$ kill %1
[1]     Terminated   server



Connectionless: Big PictureConnectionless: Big Picture

socket(): create socket

bind(): specify socket local 
IP address and port number

server client
socket(): create socket

write()/sendto(): send packets to server, 
by specifying receiver 

address and port number
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read()/recvfrom(): receive packets

close(): done close(): done



46



NTP
daemon

UDP Server ExampleUDP Server Example

Port 123

 For example: NTP daemon

 What does a UDP server need to do so 
that a UDP client can connect to it?
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UDP

IP

Ethernet Adapter

Port 123



Socket I/O: socket()Socket I/O: socket()

 The UDP server must create a datagram socket…

int fd; /* socket descriptor */

if((fd = socket(AF_INET, SOCK_DGRAM, 0)) < 0) {
perror(“socket”);
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exit(1);
}

 socket returns an integer (socket descriptor)
—fd < 0 indicates that an error occurred

 AF_INET: associates a socket with the Internet protocol family

 SOCK_DGRAM: selects the UDP protocol



Socket I/O: bind()Socket I/O: bind()
 A socket can be bound to a port

int fd; /* socket descriptor */
struct sockaddr_in srv; /* used by bind() */

/* create the socket */

/* bind: use the Internet address family */
srv.sin_family = AF_INET;

49

srv.sin_family = AF_INET;

/* bind: socket ‘fd’ to port 80*/
srv.sin_port = htons(80);

/* bind: a client may connect to any of my addresses */
srv.sin_addr.s_addr = htonl(INADDR_ANY);

if(bind(fd, (struct sockaddr*) &srv, sizeof(srv)) < 0) {
perror("bind"); exit(1);

}

 Now the UDP server  is ready to accept packets…



Socket I/O: recvfrom()Socket I/O: recvfrom()

 read does not provide the client’s address to the UDP server

int fd; /* socket descriptor */
struct sockaddr_in srv; /* used by bind() */
struct sockaddr_in cli; /* used by recvfrom() */
char buf[512]; /* used by recvfrom() */
int cli_len = sizeof(cli); /* used by recvfrom() */
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int cli_len = sizeof(cli); /* used by recvfrom() */
int nbytes; /* used by recvfrom() */

/* 1) create the socket */
/* 2) bind to the socket */

nbytes = recvfrom(fd, buf, sizeof(buf), 0 /* flags */,
(struct sockaddr*) &cli, &cli_len);

if(nbytes < 0) {
perror(“recvfrom”); exit(1);

}



Socket I/O: recvfrom() continued...Socket I/O: recvfrom() continued...

nbytes = recvfrom(fd, buf, sizeof(buf), 0 /* flags */,
(struct sockaddr*) cli, &cli_len);

 The actions performed by recvfrom
—returns the number of bytes read (nbytes)
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—copies nbytes of data into buf

—returns the address of the client (cli)

—returns the length of cli (cli_len)

—don’t worry about flags



2 UDP Clients

UDP Client ExampleUDP Client Example

 How does a UDP client communicate 
with a UDP server?

52

TCP

IP

Ethernet Adapter

ports



Socket I/O: sendto()Socket I/O: sendto()
 write is not allowed
 Notice that the UDP client does not bind a port number

— a port number is dynamically assigned when the first sendto is called

int fd; /* socket descriptor */
struct sockaddr_in srv; /* used by sendto() */

/* 1) create the socket */

53

/* 1) create the socket */

/* sendto: send data to IP Address “192.197.151.70” port 80 */
srv.sin_family = AF_INET;
srv.sin_port = htons(80); 
srv.sin_addr.s_addr = inet_addr(“192.197.151.70”);

nbytes = sendto(fd, buf, sizeof(buf), 0 /* flags */,
(struct sockaddr*) &srv, sizeof(srv));

if(nbytes < 0) {
perror(“sendto”); exit(1);

}
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Connectionless example Connectionless example -- serverserver
#include <sys/socket.h> /* for socket(), connect(), send(), and recv() */
#include <netinet/in.h>
#include <signal.h>
#include <ctype.h>
main()

{
int fd;                                         /* socket descriptor */
struct sockaddr_in srv;            /* used by bind() */
struct sockaddr_in cli;              /* used by sendto(), recvfrom() */
int cli_len = sizeof(cli);             /* used by sendto(), recvfrom() */
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int cli_len = sizeof(cli);             /* used by sendto(), recvfrom() */
int not_done = 1;
char c;
/* 1) create the socket */
if((fd = socket(AF_INET, SOCK_DGRAM, 0)) < 0) {

perror("socket call failed");
exit(1);
}

/* 2) bind the socket to a port */
srv.sin_family = AF_INET; /* use the Internet addr family */
srv.sin_port = htons(1700); /* bind socket 'fd' to port 1700 */
/* bind: a client may connect to any of my addresses */
srv.sin_addr.s_addr = htonl(INADDR_ANY);
/* INADDR_ANY - refers to local machine address */



Connectionless Connectionless –– server con’tserver con’t
if(bind(fd, (struct sockaddr *) &srv, sizeof(srv)) < 0) {

perror("bind call failed");
exit(1);
}

/* loop looking for messages */
while(not_done)

{
/* 3) receive a message */
if(recvfrom(fd, &c, 1, 0, (struct sockaddr *) &cli, &cli_len) < 0) {
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if(recvfrom(fd, &c, 1, 0, (struct sockaddr *) &cli, &cli_len) < 0) {
perror("Server: receiving");
not_done = 0;
}

c = toupper(c);
/* send the message back to where it came from */
if(sendto(fd, &c, 1, 0, (struct sockaddr *) &cli, cli_len) < 0) {

perror("Server: sending");
not_done = 0;
}

}
exit(0);
}



Connectionless example Connectionless example -- clientclient
#include <sys/socket.h> /* for socket(), connect(), send(), and recv() */
#include <arpa/inet.h> /* for sockaddr_in and inet_addr() */
#include <netinet/in.h>
#include <signal.h>
main()

{
int fd;                            /* socket descriptor */
struct sockaddr_in srv;              /* used by sendto() */
int srv_len = sizeof(srv);
char c;
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char c;
int more_data = 1;
/* 1) create the socket */
if((fd = socket(AF_INET, SOCK_DGRAM, 0)) < 0) {

perror("socket call failed");
exit(1);
}

/* set up the server information for the sendto */
srv.sin_family = AF_INET;
/* port number */
srv.sin_port = htons(1700);
/* IP Address '192.197.151.70' - odin */
srv.sin_addr.s_addr = inet_addr("192.197.151.70");



Connectionless Connectionless –– client client con’tcon’t
/*  send and receive information with the server */
while (more_data)

{
if(c != '\n') /* ignore the enter at the end of the input */

printf("Input a lower case letter (or 0 to stop) => ");
c = getchar();
if(c != '0') {

if(c != '\n') { /* ignore the enter for processing */
if (sendto(fd, &c, 1, 0, (struct sockaddr *) &srv, srv_len) < 0) {

perror("Client: sending");
exit(1);
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exit(1);
}

if (recvfrom(fd, &c, 1, 0, (struct sockaddr *) &srv, &srv_len) < 0) {
perror("Client: receiving");
exit(1);
}

printf("%c\n", c);
}

}
else

more_data = 0;
}

exit(0);
}



Connectionless ExampleConnectionless Example
 To compile use

— gcc –o server1 server1.c              // some versions need –lsocket –lnsl
— gcc –o client1 client1.c                // some versions need –lsocket –lnsl

 To run, start the server first in the background and then the client(s)
$ server1 &
$ client1
Input a lower case letter (or 0 to stop) => r
R
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R
Input a lower case letter (or 0 to stop) => i
I
Input a lower case letter (or 0 to stop) => c
C
Input a lower case letter (or 0 to stop) => h
H
Input a lower case letter (or 0 to stop) => 0
$ kill %1
[1]     Terminated   server1



UDP Server

The UDP ServerThe UDP Server

Port 2000Port 3000

 How can the UDP server
service multiple ports 
simultaneously?
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UDP

IP

Ethernet Adapter



int s1; /* socket descriptor 1 */
int s2; /* socket descriptor 2 */
int not_done = 1;

/* 1) create socket s1 */
/* 2) create socket s2 */
/* 3) bind s1 to port 2000 */

UDP Server: Servicing Two Ports UDP Server: Servicing Two Ports 
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/* 3) bind s1 to port 2000 */
/* 4) bind s2 to port 3000 */

while(not_done) {
recvfrom(s1, buf, sizeof(buf), ...);
/* process buf */

recvfrom(s2, buf, sizeof(buf), ...);
/* process buf */

}

 What problems does this code have?



Dealing with blocking callsDealing with blocking calls

 Many of the functions we saw block until a certain event
—accept: until a connection comes in

—connect: until the connection is established

—recv, recvfrom: until a packet (of data) is received

—send, sendto: until data is pushed into socket’s buffer
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—send, sendto: until data is pushed into socket’s buffer

 For simple programs, blocking is convenient

 What about more complex programs?
—multiple connections

— simultaneous sends and receives

— simultaneously doing non-networking processing



Dealing w/ blocking (cont’d)Dealing w/ blocking (cont’d)

 Options:
—create multi-process or multi-threaded code

— turn off the blocking feature (e.g., using the fcntl file-descriptor 
control function)

—use the select function call.
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 What does select() do?
—can be permanent blocking, time-limited blocking or non-blocking

— input: a set of file-descriptors

—output: info on the file-descriptors’ status

— i.e., can identify sockets that are “ready for use”: calls involving 
that socket will return immediately



select function callselect function call

 int status = select(nfds, &readfds, &writefds, &exceptfds, 
&timeout);
—status: # of ready objects, -1 if error

—nfds: 1 + largest file descriptor to check

—readfds: list of descriptors to check if read-ready
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—readfds: list of descriptors to check if read-ready

—writefds: list of descriptors to check if write-ready

—exceptfds: list of descriptors to check if an exception is registered

—timeout: time after which select returns, even if nothing ready - can be 0 
or 

(point timeout parameter to NULL for )



To be used with select:To be used with select:

 Recall select uses a structure, struct fd_set
— it is just a bit-vector

— if bit i is set in [readfds, writefds, exceptfds], select will check if 
file descriptor (i.e. socket) i is ready for [reading, writing, 
exception]
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 Before calling select:
—FD_ZERO(&fdvar): clears the structure

—FD_SET(i, &fdvar): to check file desc. i

 After calling select:
—int FD_ISSET(i, &fdvar): boolean returns TRUE iff i is “ready”



Socket I/O: select()Socket I/O: select()

int select(int maxfds, fd_set *readfds, fd_set *writefds, 
fd_set *exceptfds, struct timeval *timeout);

FD_CLR(int fd, fd_set *fds);   /* clear the bit for fd in fds */
FD_ISSET(int fd, fd_set *fds); /* is the bit for fd in fds? */
FD_SET(int fd, fd_set *fds);   /* turn on the bit for fd in fds */
FD_ZERO(fd_set *fds);          /* clear all bits in fds */
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 maxfds: number of descriptors to be tested
— descriptors (0, 1, ... maxfds-1) will be tested

 readfds: a set of fds we want to check if data is available
— returns a set of fds ready to read

— if input argument is NULL, not interested in that condition

 writefds: returns a set of fds ready to write

 exceptfds: returns a set of fds with exception conditions



Socket I/O: select()Socket I/O: select()

int select(int maxfds, fd_set *readfds, fd_set *writefds, 
fd_set *exceptfds, struct timeval *timeout);

struct timeval {
long tv_sec; /* seconds /
long tv_usec; /* microseconds */

}
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}

 timeout
— if NULL, wait forever and return only when one of the descriptors is ready for I/O
— otherwise, wait up to a fixed amount of time specified by timeout

 if we don’t want to wait at all, create a timeout structure with timer value equal to 0

 Refer to the man page for more information



int s1, s2; /* socket descriptors */
fd_set readfds; /* used by select() */
int not_done = 1;

/* create and bind s1 and s2 */
while(not_done) {

FD_ZERO(&readfds); /* initialize the fd set 

Socket I/O: select()Socket I/O: select()

 select allows synchronous I/O multiplexing 
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FD_ZERO(&readfds); /* initialize the fd set 
*/

FD_SET(s1, &readfds); /* add s1 to the fd set */
FD_SET(s2, &readfds); /* add s2 to the fd set */

if(select(s2+1, &readfds, 0, 0, 0) < 0) {
perror(“select”);
exit(1);

}
if(FD_ISSET(s1, &readfds)) {

recvfrom(s1, buf, sizeof(buf), ...);
/* process buf */

}
/* do the same for s2 */

}



Web Server

Port 80

How can a a web server manage
multiple connections simultaneously?

Port 8001

More Details About a Web ServerMore Details About a Web Server
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TCP

IP

Ethernet Adapter

Port 80



int fd, next=0; /* original socket */
int newfd[10]; /* new socket descriptors */
int not_done = 1;

while(not_done) {
fd_set readfds;
FD_ZERO(&readfds); FD_SET(fd, &readfds);

/* Now use FD_SET to initialize other newfd’s
that have already been returned by accept() */

Socket I/O: select()Socket I/O: select()
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that have already been returned by accept() */

select(maxfd+1, &readfds, 0, 0, 0);
if(FD_ISSET(fd, &readfds)) {

newfd[next++] = accept(fd, ...); 
}
/* do the following for each descriptor newfd[n] */
if(FD_ISSET(newfd[n], &readfds)) {

read(newfd[n], buf, sizeof(buf));
/* process data */

}
}

 Now the web server can support multiple connections...



Other useful functionsOther useful functions

 bzero(char* c, int n): 0’s n bytes starting at c

 gethostname(char *name, int len): gets the name of the current host

 gethostbyaddr(char *addr, int len, int type): converts IP hostname 
to structure containing long integer

 inet_addr(const char *cp): converts dotted-decimal char-string to 
long integer
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long integer

 inet_ntoa(const struct in_addr in): converts long to dotted-decimal 
notation

 Warning: check function assumptions about byte-ordering (host or 
network).  Often, they assume parameters / return solutions in network 
byte-order


