
Socket Programming

UNIX System ProgrammingUNIX System Programming

1

Socket ProgrammingSocket Programming

 What is a socket?

 Using sockets
—Types (Protocols)

—Associated functions

—Styles

2

—Styles

What is a socketWhat is a socket

Socket API
 introduced in BSD4.1

UNIX, 1981

 Two types of sockets an interface (a “door”)

socket

3

 Two types of sockets
—connection-oriented

—connectionless

an interface (a “door”)
into which one

application process can
both send and

receive messages to/from
another (remote or

local) application process

Two essential types of socketsTwo essential types of sockets
 SOCK_STREAM

— a.k.a. TCP

— reliable delivery

— in-order guaranteed

— connection-oriented

— bidirectional

 SOCK_DGRAM

— a.k.a. UDP

— unreliable delivery

— no order guarantees

— no notion of “connection” – App
indicates destination for each packet

— can send or receive

4

App

socket
3 2 1 Dest.

App

socket
3 2 1

D1

D3

D2

Socket Creation in C: socketSocket Creation in C: socket
 int s = socket(domain, type, protocol);

—s: socket descriptor, an integer (like a file descriptor)

—domain: integer, communication domain
 AF_INET (IPv4 protocol) – typically used
 AF_INET6 (IPv6 protocol)
 AF_UNIX or AF_LOCAL – intra-machine communication

—type: communication type

5

—type: communication type
 SOCK_STREAM: reliable, 2-way, connection-based service
 SOCK_DGRAM: unreliable, connectionless,
 other values: need root permission, rarely used, or obsolete

—protocol: specifies a particular protocol to be used with the socket.
Normally only a single protocol exists to support a particular socket
type within a given protocol family, in which case protocol can be
specified as 0.

 NOTE: socket call does not specify where data will be coming
from, nor where it will be going to – it just creates the interface!

A SocketA Socket--eye view of the Interneteye view of the Internet

odin.trentu.ca

(192.197.151.70)

church.cse.ogi.edu

www.google.com

(74.125.226.145)

6

 Each host machine has an IP address

 When a packet arrives at a host

church.cse.ogi.edu

(129.95.50.2, 129.95.40.2)

PortsPorts

Port 0

Port 1

Port 65535

 Each host has 65,536 ports

 Some ports are reserved for
specific apps
— 20 & 21: FTP

— 22: SSH

— 23: Telnet

7

— 23: Telnet

— 25: SMTP

— 53: DNS

— 80: HTTP

— 110: POP3

— 143: IMAP

— 443: HTTPS

— 465: SMTPS

 A socket provides an interface
to send data to/from the
network through a port

Addresses, Ports and SocketsAddresses, Ports and Sockets

 Like apartments and mailboxes
—You are the Application

—Your home address is the IP address

—Your mailbox is the port

—The Post Office is the network

8

—The Post Office is the network

 Q: How do you choose which port to connects a socket?

#include <netinet/in.h>

/* Internet address structure */
struct in_addr {

u_long s_addr; /* 32-bit IPv4 address */
}; /* network byte ordered */

Internet Addressing Data StructureInternet Addressing Data Structure

9

/* Socket address, Internet style. */
struct sockaddr_in {

u_char sin_family; /* Address Family */
u_short sin_port; /* UDP or TCP Port# */

/* network byte ordered */
struct in_addr sin_addr; /* Internet Address */
char sin_zero[8]; /* unused */

};

 sin_family = AF_INET selects Internet address family

Byte OrderingByte Ordering
union {

u_int32_t addr; /* 4 bytes address */
char c[4];

} un;
/* 128.2.194.95 */
un.addr = 0x8002c25f;
/* c[0] = ? */

10

Big Endian
—Sun Solaris, PowerPC, ...

Little Endian
—i386, alpha, ...

Network byte order = Big Endian

128 2 194 95

c[0] c[1] c[2] c[3]

95 194 2 128

Address and port byteAddress and port byte--orderingordering
 Address and port are stored as integers

—u_short sin_port; (16 bit)

— in_addr sin_addr; (32 bit)

struct in_addr {
u_long s_addr;

};
 Problem:

different machines / OS’s use different word orderings

11

different machines / OS’s use different word orderings
little-endian: lower bytes first
big-endian: higher bytes first

 these machines may communicate with one another over the
network

129.95.50.2

129 95 50 2

2.50.95.129

129 95 50 2

Big-Endian
machine

Little-Endian
machine

UNIX’s byteUNIX’s byte--ordering funcsordering funcs

 u_long htonl(u_long x);

 u_short htons(u_short x);

 u_long ntohl(u_long x);

 u_short ntohs(u_short x);

 On big-endian machines, these routines do nothing
 On little-endian machines, they reverse the byte

12

 On little-endian machines, they reverse the byte
order

 Same code would have worked regardless of endian-
ness of the two machines

129.95.50.2

129 95 50 2

129.95.50.2

129 95 50 2

Big-Endian
machine Little-Endian

machine n
to

h
l

129 95 50 2 12995502

Byte Ordering FunctionsByte Ordering Functions

 Converts between host byte order and network byte order
— ‘h’ = host byte order
— ‘n’ = network byte order
— ‘l’ = long (4 bytes), converts IP addresses
— ‘s’ = short (2 bytes), converts port numbers

13

#include <netinet/in.h>

unsigned long int htonl(unsigned long int hostlong);
unsigned short int htons(unsigned short int
hostshort);
unsigned long int ntohl(unsigned long int netlong);
unsigned short int ntohs(unsigned short int
netshort);

Web Server

Port 80

 For example: web server

 What does a web server need to
do so that a web client can
connect to it?

TCP ServerTCP Server

14

TCP

IP

Ethernet Adapter

 Since web traffic uses TCP, the web server must create a socket of type
SOCK_STREAM (connection-oriented)

int fd; /* socket descriptor */

if((fd = socket(AF_INET, SOCK_STREAM, 0)) < 0) {
perror(“socket”);

Socket I/O: socket()Socket I/O: socket()

15

perror(“socket”);
exit(1);

}

 socket returns an integer (socket descriptor)

—fd < 0 indicates that an error occurred

 AF_INET associates a socket with the Internet protocol family

 SOCK_STREAM selects the TCP protocol

 In some Unixes, need to compile with –lsocket -lnsl to link in socket libraries

 A socket can be bound to a port

int fd; /* socket descriptor */
struct sockaddr_in srv; /* used by bind() */

/* create the socket */

srv.sin_family = AF_INET; /* use the Internet addr family */

Socket I/O: bind()Socket I/O: bind()

16

srv.sin_port = htons(80); /* bind socket ‘fd’ to port 80*/

/* bind: a client may connect to any of my addresses */
srv.sin_addr.s_addr = htonl(INADDR_ANY);
/* INADDR_ANY – refers to local machine address */

if(bind(fd, (struct sockaddr*) &srv, sizeof(srv)) < 0) {
perror("bind"); exit(1);

}

 Still not quite ready to communicate with a client...

Socket I/O: listen()Socket I/O: listen()

 listen indicates that the server will accept a connection

int fd; /* socket descriptor */
struct sockaddr_in srv; /* used by bind() */

/* 1) create the socket */
/* 2) bind the socket to a port */

17

/* 2) bind the socket to a port */

if(listen(fd, 5) < 0) {
perror(“listen”);
exit(1);

}

 Still not quite ready to communicate with a client...

Socket I/O: accept()Socket I/O: accept()

 accept blocks waiting for a connection

int fd; /* socket descriptor */
struct sockaddr_in srv; /* used by bind() */
struct sockaddr_in cli; /* used by accept() */
int newfd; /* returned by accept() */
int cli_len = sizeof(cli); /* used by accept() */

18

/* 1) create the socket */
/* 2) bind the socket to a port */
/* 3) listen on the socket */

newfd = accept(fd, (struct sockaddr*) &cli, &cli_len);
if(newfd < 0) {

perror("accept"); exit(1);
}

 accept returns a new socket (newfd) with the same properties as the original
socket (fd)
—newfd < 0 indicates that an error occurred

Socket I/O: accept() continued...Socket I/O: accept() continued...

struct sockaddr_in cli; /* used by accept() */
int newfd; /* returned by accept() */
int cli_len = sizeof(cli); /* used by accept() */

newfd = accept(fd, (struct sockaddr*) &cli, &cli_len);
if(newfd < 0) {

perror("accept");

19

exit(1);
}

 How does the server know which client it is?

—cli.sin_addr.s_addr contains the client’s IP address

—cli.sin_port contains the client’s port number

 Now the server can exchange data with the client by using
read and write on the descriptor newfd.

 Why does accept need to return a new descriptor?

Connection setupConnection setup

 Passive participant - server
— step 1: listen (for incoming

requests)

— step 3: accept (a request)

— step 4: data transfer

 Active participant - clients

— step 2: request & establish
connection

— step 4: data transfer

20

 The accepted connection is on a
new socket

 The old socket continues to
listen for other active
participants

Passive Participant
l-socka-sock-1 a-sock-2

Active 1
socket

Active 2
socket

Socket I/O: read()Socket I/O: read()

 read can be used with a socket

 read blocks waiting for data from the client but does not guarantee
that sizeof(buf) is read

int fd; /* socket descriptor */

21

int fd; /* socket descriptor */
char buf[512]; /* used by read() */
int nbytes; /* used by read() */

/* 1) create the socket */
/* 2) bind the socket to a port */
/* 3) listen on the socket */
/* 4) accept the incoming connection */

if((nbytes = read(newfd, buf, sizeof(buf))) < 0) {
perror(“read”); exit(1);

}

2 Web Clients

TCP ClientTCP Client

 For example: web client

 How does a web client connect to
a web server?

22

TCP

IP

Ethernet Adapter

struct sockaddr_in srv;

srv.sin_addr.s_addr = inet_addr(“128.192.35.50”);

Dealing with IP AddressesDealing with IP Addresses

 IP Addresses are commonly written as strings (“128.192.35.50”), but programs deal
with IP addresses as integers.

Converting strings to numerical address:

23

srv.sin_addr.s_addr = inet_addr(“128.192.35.50”);
if(srv.sin_addr.s_addr == (in_addr_t) -1) {

fprintf(stderr, "inet_addr failed!\n"); exit(1);
}

Converting a numerical address to a string:
struct sockaddr_in srv;
char *t = inet_ntoa(srv.sin_addr);
if(t == 0) {

fprintf(stderr, “inet_ntoa failed!\n”); exit(1);
}

Translating Names to AddressesTranslating Names to Addresses

 Gethostbyname provides interface to DNS
 Additional useful calls

—Gethostbyaddr – returns hostent given sockaddr_in
—Getservbyname

 Used to get service description (typically port number)
 Returns servent based on name

24

 Returns servent based on name

#include <netdb.h>

struct hostent *hp; /*ptr to host info for remote*/
struct sockaddr_in peeraddr;
char *name = “odin.trentu.ca”;

peeraddr.sin_family = AF_INET;
hp = gethostbyname(name)
peeraddr.sin_addr.s_addr = ((struct in_addr*)(hp->h_addr))->s_addr;

Socket I/O: connect()Socket I/O: connect()

 connect allows a client to connect to a server...

int fd; /* socket descriptor */
struct sockaddr_in srv; /* used by connect() */

/* create the socket */

/* connect: use the Internet address family */

25

/* connect: use the Internet address family */
srv.sin_family = AF_INET;

/* connect: socket ‘fd’ to port 80 */
srv.sin_port = htons(80);

/* connect: connect to IP Address “192.197.151.70” */
srv.sin_addr.s_addr = inet_addr(“192.197.151.70”);

if(connect(fd, (struct sockaddr*) &srv, sizeof(srv)) < 0) {
perror(”connect"); exit(1);

}

Socket I/O: write()Socket I/O: write()

 write can be used with a socket

int fd; /* socket descriptor */
struct sockaddr_in srv; /* used by connect() */
char buf[512]; /* used by write() */
int nbytes; /* used by write() */

26

/* 1) create the socket */
/* 2) connect() to the server */

/* Example: A client could “write” a request to a server */
if((nbytes = write(fd, buf, sizeof(buf))) < 0) {

perror(“write”);
exit(1);

}

27

Review: TCP ClientReview: TCP Client--Server Server
InteractionInteraction

socket()

bind()

listen()

accept()

TCP Server

socket()

TCP Client

28

accept()

write()

read()

read()

close()

socket()

connect()

write()

read()

close()

connection establishment

data request

data reply

end-of-file notification

The The bindbind functionfunction

 associates and (can exclusively) reserves a port for use by
the socket

 int status = bind(sockid, &addrport, size);
—status: error status, = -1 if bind failed

—sockid: integer, socket descriptor

29

—sockid: integer, socket descriptor

—addrport: struct sockaddr, the (IP) address and port of the
machine (address usually set to INADDR_ANY – chooses a local
address)

—size: the size (in bytes) of the addrport structure

 bind can be skipped for both types of sockets.

Skipping the Skipping the bindbind

 SOCK_DGRAM:
— if only sending, no need to bind. The OS finds a port each time the

socket sends a packet

— if receiving, need to bind

30

 SOCK_STREAM:
—destination determined during connection setup

—don’t need to know port sending from (during connection setup,
receiving end is informed of port)

Review: TCP ClientReview: TCP Client--Server Server
InteractionInteraction

socket()

bind()

listen()

accept()

TCP Server

socket()

TCP Client

31

accept()

write()

read()

read()

close()

socket()

connect()

write()

read()

close()

connection establishment

data request

data reply

end-of-file notification

Connection setup: Connection setup: listen & acceptlisten & accept
 Called by passive participant
 int status = listen(sock, queuelen);

— status: 0 if listening, -1 if error
— sock: integer, socket descriptor
— queuelen: integer, # of active participants that can “wait” for a

connection
— listen is non-blocking: returns immediately

32

 int s = accept(sock, &name, &namelen);
— s: integer, the new socket (used for data-transfer)
— sock: integer, the orig. socket (being listened on)
— name: struct sockaddr, address of the active participant
— namelen: sizeof(name): value/result parameter

 must be set appropriately before call
 adjusted by OS upon return

— accept is blocking: waits for connection before returning

Review: TCP ClientReview: TCP Client--Server Server
InteractionInteraction

socket()

bind()

listen()

accept()

TCP Server

socket()

TCP Client

33

accept()

write()

read()

read()

close()

socket()

connect()

write()

read()

close()

connection establishment

data request

data reply

end-of-file notification

connectconnect callcall

 int status = connect(sock, &name, namelen);
—status: 0 if successful connect, -1 otherwise

—sock: integer, socket to be used in connection

—name: struct sockaddr: address of passive participant

—namelen: integer, sizeof(name)

34

—namelen: integer, sizeof(name)

 connect is blocking

Review: TCP ClientReview: TCP Client--Server Server
InteractionInteraction

socket()

bind()

listen()

accept()

TCP Server

socket()

TCP Client

35

accept()

write()

read()

read()

close()

socket()

connect()

write()

read()

close()

connection establishment

data request

data reply

end-of-file notification

Sending / Receiving Data Sending / Receiving Data
 With a connection (SOCK_STREAM):

—Use send()/recv() instead of read()/write()

—int count = send(sock, &buf, len, flags);
 count: # bytes transmitted (-1 if error)
 buf: char[], buffer to be transmitted
 len: integer, length of buffer (in bytes) to transmit

36

 len: integer, length of buffer (in bytes) to transmit
 flags: integer, special options, usually just 0

—int count = recv(sock, &buf, len, flags);
 count: # bytes received (-1 if error)
 buf: void[], stores received bytes
 len: # bytes received
 flags: integer, special options, usually just 0

—Calls are blocking [returns only after data is sent (to socket buf) /
received]

closeclose

 When finished using a socket, the socket should be closed:

 status = close(s);
—status: 0 if successful, -1 if error

—s: the file descriptor (socket being closed)

 Closing a socket

37

 Closing a socket
—closes a connection (for SOCK_STREAM)

— frees up the port used by the socket

ConnectionConnection--oriented: Big Pictureoriented: Big Picture

sd=socket(): create socket

bind(sd, …): specify socket address

server client

TCP
connection setup

listen(sd, …): specify that socket
sd is a listening socket

socket(): create socket

bind(): specify socket address

connect(): initialize TCP handshake;
return until TCP handshake is done

optional

38

connection setup
sd2=accept(sd, …):

get a connected connection
from the queue for socket sd;

create a new socket identified by sd2

send()/recv(): do IO on socket sd2

close(sd2): done

send()/recv(): do IO on the socket

close(): done

Connection Example Connection Example -- serverserver
#include <sys/socket.h> /* for socket(), connect(), send(), and recv() */
#include <netinet/in.h>
#include <signal.h>
#include <ctype.h>
void catcher(int sig);
int newfd;
main()

{
int fd; /* socket descriptor */
struct sockaddr_in srv; /* used by bind() */
struct sockaddr_in cli; /* used by accept() */

39

struct sockaddr_in cli; /* used by accept() */
int cli_len = sizeof(cli); /* used by accept() */
int not_done = 1;
char c;
signal(SIGPIPE, catcher);
/* 1) create the socket */
if((fd = socket(AF_INET, SOCK_STREAM, 0)) < 0) {

perror("socket call failed");
exit(1); }

/* 2) bind the socket to a port */
srv.sin_family = AF_INET; /* use the Internet addr family */
srv.sin_port = htons(1700); /* bind socket 'fd' to port 1700 */
/* bind: a client may connect to any of my addresses */

Connection example Connection example –– server con’tserver con’t

srv.sin_addr.s_addr = htonl(INADDR_ANY);
/* INADDR_ANY - refers to local machine address */
if(bind(fd, (struct sockaddr *) &srv, sizeof(srv)) < 0) {

perror("bind call failed");
exit(1);
}

/* 3) listen on the socket */
if(listen(fd, 5) < 0) {

40

if(listen(fd, 5) < 0) {
perror("listen call failed");
exit(1);
}

/* loop looking for messages */
while (not_done)

{
/* 4) accept the incoming connection */
newfd = accept(fd, (struct sockaddr*) &cli, &cli_len);
if(newfd < 0) {

perror("accept call failed");
not_done = 0;
}

Connection example Connection example –– server server con’tcon’t
/* spawn a child to deal with this connection */
if (fork() == 0)

{
while(recv(newfd, &c, 1, 0) > 0) { /* could use read as well */

c = toupper(c);
send(newfd, &c, 1, 0); /* could use write as well */
}

/* when client is no longer sending, close socket and child */
close(newfd);
exit(0);

41

}
else /* parent */

close(newfd);
}

}

/* signal handler in case socket becomes disconnected */
void catcher(int sig)

{
signal(SIGPIPE, catcher);
close(newfd);
exit(0);
}

Connection Example Connection Example -- clientclient
#include <sys/socket.h> /* for socket(), connect(), send(), and recv() */
#include <arpa/inet.h> /* for sockaddr_in and inet_addr() */
#include <netinet/in.h>
#include <signal.h>
main()

{
int fd; /* socket descriptor */
struct sockaddr_in srv; /* used by connect() */
char c, rc;
int more_data = 1;

42

int more_data = 1;
/* 1) create the socket */
if((fd = socket(AF_INET, SOCK_STREAM, 0)) < 0) {

perror("socket call failed");
exit(1);
}

/* 2) connect() to the server */
/* connect: use the Internet address family */
srv.sin_family = AF_INET;
/* connect: socket 'fd' to port 1700 */
srv.sin_port = htons(1700);

/* connect: connect to IP Address '192.197.151.70' - odin */
srv.sin_addr.s_addr = inet_addr("192.197.151.70");

Connection example Connection example –– client client con’tcon’t
if(connect(fd, (struct sockaddr*) &srv, sizeof(srv)) < 0) {

perror("connect call failed"); exit(1);
}

/* send and receive information with the server */
while (more_data)

{
if(c != '\n') /* ignore the enter at the end of the input */

printf("Input a lower case letter (or 0 to stop) => ");
c = getchar();
if(c != '0') {

if(c != '\n') { /* ignore the enter for processing */
send(fd, &c, 1, 0); /* could use write as well */

43

send(fd, &c, 1, 0); /* could use write as well */
if(recv(fd, &rc, 1, 0) > 0) /* could use read as well */

printf("%c\n", rc);
else {

printf("Server has died\n");
close(fd);
exit(1);
}

}
}

else
more_data = 0;

}
exit(0);
}

Connection ExampleConnection Example
 To compile use

— gcc –o server server.c // some versions need –lsocket –lnsl
— gcc –o client client.c // some versions need –lsocket –lnsl

 To run, start the server first in the background and then the client(s)
$ server &
$ client
Input a lower case letter (or 0 to stop) => r
R

44

R
Input a lower case letter (or 0 to stop) => i
I
Input a lower case letter (or 0 to stop) => c
C
Input a lower case letter (or 0 to stop) => h
H
Input a lower case letter (or 0 to stop) => 0
$ kill %1
[1] Terminated server

Connectionless: Big PictureConnectionless: Big Picture

socket(): create socket

bind(): specify socket local
IP address and port number

server client
socket(): create socket

write()/sendto(): send packets to server,
by specifying receiver

address and port number

45

read()/recvfrom(): receive packets

close(): done close(): done

46

NTP
daemon

UDP Server ExampleUDP Server Example

Port 123

 For example: NTP daemon

 What does a UDP server need to do so
that a UDP client can connect to it?

47

UDP

IP

Ethernet Adapter

Port 123

Socket I/O: socket()Socket I/O: socket()

 The UDP server must create a datagram socket…

int fd; /* socket descriptor */

if((fd = socket(AF_INET, SOCK_DGRAM, 0)) < 0) {
perror(“socket”);

48

exit(1);
}

 socket returns an integer (socket descriptor)
—fd < 0 indicates that an error occurred

 AF_INET: associates a socket with the Internet protocol family

 SOCK_DGRAM: selects the UDP protocol

Socket I/O: bind()Socket I/O: bind()
 A socket can be bound to a port

int fd; /* socket descriptor */
struct sockaddr_in srv; /* used by bind() */

/* create the socket */

/* bind: use the Internet address family */
srv.sin_family = AF_INET;

49

srv.sin_family = AF_INET;

/* bind: socket ‘fd’ to port 80*/
srv.sin_port = htons(80);

/* bind: a client may connect to any of my addresses */
srv.sin_addr.s_addr = htonl(INADDR_ANY);

if(bind(fd, (struct sockaddr*) &srv, sizeof(srv)) < 0) {
perror("bind"); exit(1);

}

 Now the UDP server is ready to accept packets…

Socket I/O: recvfrom()Socket I/O: recvfrom()

 read does not provide the client’s address to the UDP server

int fd; /* socket descriptor */
struct sockaddr_in srv; /* used by bind() */
struct sockaddr_in cli; /* used by recvfrom() */
char buf[512]; /* used by recvfrom() */
int cli_len = sizeof(cli); /* used by recvfrom() */

50

int cli_len = sizeof(cli); /* used by recvfrom() */
int nbytes; /* used by recvfrom() */

/* 1) create the socket */
/* 2) bind to the socket */

nbytes = recvfrom(fd, buf, sizeof(buf), 0 /* flags */,
(struct sockaddr*) &cli, &cli_len);

if(nbytes < 0) {
perror(“recvfrom”); exit(1);

}

Socket I/O: recvfrom() continued...Socket I/O: recvfrom() continued...

nbytes = recvfrom(fd, buf, sizeof(buf), 0 /* flags */,
(struct sockaddr*) cli, &cli_len);

 The actions performed by recvfrom
—returns the number of bytes read (nbytes)

51

—copies nbytes of data into buf

—returns the address of the client (cli)

—returns the length of cli (cli_len)

—don’t worry about flags

2 UDP Clients

UDP Client ExampleUDP Client Example

 How does a UDP client communicate
with a UDP server?

52

TCP

IP

Ethernet Adapter

ports

Socket I/O: sendto()Socket I/O: sendto()
 write is not allowed
 Notice that the UDP client does not bind a port number

— a port number is dynamically assigned when the first sendto is called

int fd; /* socket descriptor */
struct sockaddr_in srv; /* used by sendto() */

/* 1) create the socket */

53

/* 1) create the socket */

/* sendto: send data to IP Address “192.197.151.70” port 80 */
srv.sin_family = AF_INET;
srv.sin_port = htons(80);
srv.sin_addr.s_addr = inet_addr(“192.197.151.70”);

nbytes = sendto(fd, buf, sizeof(buf), 0 /* flags */,
(struct sockaddr*) &srv, sizeof(srv));

if(nbytes < 0) {
perror(“sendto”); exit(1);

}

Review: UDP ClientReview: UDP Client--ServerServer
InteractionInteraction

socket()

bind()

recvfrom()

UDP Server

socket()

UDP Client

54

sendto()

socket()

sendto()

recvfrom()

close()

blocks until datagram
received from a client

data request

data reply

Connectionless example Connectionless example -- serverserver
#include <sys/socket.h> /* for socket(), connect(), send(), and recv() */
#include <netinet/in.h>
#include <signal.h>
#include <ctype.h>
main()

{
int fd; /* socket descriptor */
struct sockaddr_in srv; /* used by bind() */
struct sockaddr_in cli; /* used by sendto(), recvfrom() */
int cli_len = sizeof(cli); /* used by sendto(), recvfrom() */

55

int cli_len = sizeof(cli); /* used by sendto(), recvfrom() */
int not_done = 1;
char c;
/* 1) create the socket */
if((fd = socket(AF_INET, SOCK_DGRAM, 0)) < 0) {

perror("socket call failed");
exit(1);
}

/* 2) bind the socket to a port */
srv.sin_family = AF_INET; /* use the Internet addr family */
srv.sin_port = htons(1700); /* bind socket 'fd' to port 1700 */
/* bind: a client may connect to any of my addresses */
srv.sin_addr.s_addr = htonl(INADDR_ANY);
/* INADDR_ANY - refers to local machine address */

Connectionless Connectionless –– server con’tserver con’t
if(bind(fd, (struct sockaddr *) &srv, sizeof(srv)) < 0) {

perror("bind call failed");
exit(1);
}

/* loop looking for messages */
while(not_done)

{
/* 3) receive a message */
if(recvfrom(fd, &c, 1, 0, (struct sockaddr *) &cli, &cli_len) < 0) {

56

if(recvfrom(fd, &c, 1, 0, (struct sockaddr *) &cli, &cli_len) < 0) {
perror("Server: receiving");
not_done = 0;
}

c = toupper(c);
/* send the message back to where it came from */
if(sendto(fd, &c, 1, 0, (struct sockaddr *) &cli, cli_len) < 0) {

perror("Server: sending");
not_done = 0;
}

}
exit(0);
}

Connectionless example Connectionless example -- clientclient
#include <sys/socket.h> /* for socket(), connect(), send(), and recv() */
#include <arpa/inet.h> /* for sockaddr_in and inet_addr() */
#include <netinet/in.h>
#include <signal.h>
main()

{
int fd; /* socket descriptor */
struct sockaddr_in srv; /* used by sendto() */
int srv_len = sizeof(srv);
char c;

57

char c;
int more_data = 1;
/* 1) create the socket */
if((fd = socket(AF_INET, SOCK_DGRAM, 0)) < 0) {

perror("socket call failed");
exit(1);
}

/* set up the server information for the sendto */
srv.sin_family = AF_INET;
/* port number */
srv.sin_port = htons(1700);
/* IP Address '192.197.151.70' - odin */
srv.sin_addr.s_addr = inet_addr("192.197.151.70");

Connectionless Connectionless –– client client con’tcon’t
/* send and receive information with the server */
while (more_data)

{
if(c != '\n') /* ignore the enter at the end of the input */

printf("Input a lower case letter (or 0 to stop) => ");
c = getchar();
if(c != '0') {

if(c != '\n') { /* ignore the enter for processing */
if (sendto(fd, &c, 1, 0, (struct sockaddr *) &srv, srv_len) < 0) {

perror("Client: sending");
exit(1);

58

exit(1);
}

if (recvfrom(fd, &c, 1, 0, (struct sockaddr *) &srv, &srv_len) < 0) {
perror("Client: receiving");
exit(1);
}

printf("%c\n", c);
}

}
else

more_data = 0;
}

exit(0);
}

Connectionless ExampleConnectionless Example
 To compile use

— gcc –o server1 server1.c // some versions need –lsocket –lnsl
— gcc –o client1 client1.c // some versions need –lsocket –lnsl

 To run, start the server first in the background and then the client(s)
$ server1 &
$ client1
Input a lower case letter (or 0 to stop) => r
R

59

R
Input a lower case letter (or 0 to stop) => i
I
Input a lower case letter (or 0 to stop) => c
C
Input a lower case letter (or 0 to stop) => h
H
Input a lower case letter (or 0 to stop) => 0
$ kill %1
[1] Terminated server1

UDP Server

The UDP ServerThe UDP Server

Port 2000Port 3000

 How can the UDP server
service multiple ports
simultaneously?

60

UDP

IP

Ethernet Adapter

int s1; /* socket descriptor 1 */
int s2; /* socket descriptor 2 */
int not_done = 1;

/* 1) create socket s1 */
/* 2) create socket s2 */
/* 3) bind s1 to port 2000 */

UDP Server: Servicing Two Ports UDP Server: Servicing Two Ports

61

/* 3) bind s1 to port 2000 */
/* 4) bind s2 to port 3000 */

while(not_done) {
recvfrom(s1, buf, sizeof(buf), ...);
/* process buf */

recvfrom(s2, buf, sizeof(buf), ...);
/* process buf */

}

 What problems does this code have?

Dealing with blocking callsDealing with blocking calls

 Many of the functions we saw block until a certain event
—accept: until a connection comes in

—connect: until the connection is established

—recv, recvfrom: until a packet (of data) is received

—send, sendto: until data is pushed into socket’s buffer

62

—send, sendto: until data is pushed into socket’s buffer

 For simple programs, blocking is convenient

 What about more complex programs?
—multiple connections

— simultaneous sends and receives

— simultaneously doing non-networking processing

Dealing w/ blocking (cont’d)Dealing w/ blocking (cont’d)

 Options:
—create multi-process or multi-threaded code

— turn off the blocking feature (e.g., using the fcntl file-descriptor
control function)

—use the select function call.

63

 What does select() do?
—can be permanent blocking, time-limited blocking or non-blocking

— input: a set of file-descriptors

—output: info on the file-descriptors’ status

— i.e., can identify sockets that are “ready for use”: calls involving
that socket will return immediately

select function callselect function call

 int status = select(nfds, &readfds, &writefds, &exceptfds,
&timeout);
—status: # of ready objects, -1 if error

—nfds: 1 + largest file descriptor to check

—readfds: list of descriptors to check if read-ready

64

—readfds: list of descriptors to check if read-ready

—writefds: list of descriptors to check if write-ready

—exceptfds: list of descriptors to check if an exception is registered

—timeout: time after which select returns, even if nothing ready - can be 0
or 

(point timeout parameter to NULL for )

To be used with select:To be used with select:

 Recall select uses a structure, struct fd_set
— it is just a bit-vector

— if bit i is set in [readfds, writefds, exceptfds], select will check if
file descriptor (i.e. socket) i is ready for [reading, writing,
exception]

65

 Before calling select:
—FD_ZERO(&fdvar): clears the structure

—FD_SET(i, &fdvar): to check file desc. i

 After calling select:
—int FD_ISSET(i, &fdvar): boolean returns TRUE iff i is “ready”

Socket I/O: select()Socket I/O: select()

int select(int maxfds, fd_set *readfds, fd_set *writefds,
fd_set *exceptfds, struct timeval *timeout);

FD_CLR(int fd, fd_set *fds); /* clear the bit for fd in fds */
FD_ISSET(int fd, fd_set *fds); /* is the bit for fd in fds? */
FD_SET(int fd, fd_set *fds); /* turn on the bit for fd in fds */
FD_ZERO(fd_set *fds); /* clear all bits in fds */

66

 maxfds: number of descriptors to be tested
— descriptors (0, 1, ... maxfds-1) will be tested

 readfds: a set of fds we want to check if data is available
— returns a set of fds ready to read

— if input argument is NULL, not interested in that condition

 writefds: returns a set of fds ready to write

 exceptfds: returns a set of fds with exception conditions

Socket I/O: select()Socket I/O: select()

int select(int maxfds, fd_set *readfds, fd_set *writefds,
fd_set *exceptfds, struct timeval *timeout);

struct timeval {
long tv_sec; /* seconds /
long tv_usec; /* microseconds */

}

67

}

 timeout
— if NULL, wait forever and return only when one of the descriptors is ready for I/O
— otherwise, wait up to a fixed amount of time specified by timeout

 if we don’t want to wait at all, create a timeout structure with timer value equal to 0

 Refer to the man page for more information

int s1, s2; /* socket descriptors */
fd_set readfds; /* used by select() */
int not_done = 1;

/* create and bind s1 and s2 */
while(not_done) {

FD_ZERO(&readfds); /* initialize the fd set

Socket I/O: select()Socket I/O: select()

 select allows synchronous I/O multiplexing

68

FD_ZERO(&readfds); /* initialize the fd set
*/

FD_SET(s1, &readfds); /* add s1 to the fd set */
FD_SET(s2, &readfds); /* add s2 to the fd set */

if(select(s2+1, &readfds, 0, 0, 0) < 0) {
perror(“select”);
exit(1);

}
if(FD_ISSET(s1, &readfds)) {

recvfrom(s1, buf, sizeof(buf), ...);
/* process buf */

}
/* do the same for s2 */

}

Web Server

Port 80

How can a a web server manage
multiple connections simultaneously?

Port 8001

More Details About a Web ServerMore Details About a Web Server

69

TCP

IP

Ethernet Adapter

Port 80

int fd, next=0; /* original socket */
int newfd[10]; /* new socket descriptors */
int not_done = 1;

while(not_done) {
fd_set readfds;
FD_ZERO(&readfds); FD_SET(fd, &readfds);

/* Now use FD_SET to initialize other newfd’s
that have already been returned by accept() */

Socket I/O: select()Socket I/O: select()

70

that have already been returned by accept() */

select(maxfd+1, &readfds, 0, 0, 0);
if(FD_ISSET(fd, &readfds)) {

newfd[next++] = accept(fd, ...);
}
/* do the following for each descriptor newfd[n] */
if(FD_ISSET(newfd[n], &readfds)) {

read(newfd[n], buf, sizeof(buf));
/* process data */

}
}

 Now the web server can support multiple connections...

Other useful functionsOther useful functions

 bzero(char* c, int n): 0’s n bytes starting at c

 gethostname(char *name, int len): gets the name of the current host

 gethostbyaddr(char *addr, int len, int type): converts IP hostname
to structure containing long integer

 inet_addr(const char *cp): converts dotted-decimal char-string to
long integer

71

long integer

 inet_ntoa(const struct in_addr in): converts long to dotted-decimal
notation

 Warning: check function assumptions about byte-ordering (host or
network). Often, they assume parameters / return solutions in network
byte-order

