Socket Programming

® What is a socket?

® Using sockets
— Types (Protocols)
— Associated functions
— Styles

Socket API

® introduced in BSDA4.1
UNIX, 1981

® Two types of sockets
— connection-oriented

— connectionless

— socket

an interface (a "door")
into which one
application process can
both send and
receive messages to/from
another (remote or
local) application process

e SOCK_STREAM e SOCK DGRAM

—a.k.a. TCP —a.k.a. UDP

— reliable delivery — unreliable delivery

— 1n-order guaranteed — no order guarantees

— connection-oriented — 1o notion of “connection” — App

— bidirectional indicates destination for each packet

— can send or receive

<wwL0est.] o 5
w55

® int s = socket(domain, type, protocol);
—S: socket descriptor, an integer (like a file descriptor)

—domain: integer, communication domain
o AF_INET (IPv4 protocol) — typically used
o AF_INETG6 (IPv6 protocol)
e AF_UNIX or AF_LOCAL - intra-machine communication

—type: communication type
o SOCK STREAM: reliable, 2-way, connection-based service

o SOCK_DGRAM: unreliable, connectionless,
e other values: need root permission, rarely used, or obsolete

— protocol: specifies a particular protocol to be used with the socket.
Normally only a single protocol exists to support a particular socket
type within a given protocol family, in which case protocol can be
specified as 0.

® NOTE: socket call does not specify where data will be coming
from, nor where 1t will be going to — it just creates the interface!

5

odin.trentu.ca
(192.197.151.70)

www.google.com
(74.125.226.145)

church.cse.ogi.edu
(129.95.50.2, 129.95.40.2)

® Each host machine has an IP address
® When a packet arrives at a host

® Each host has 65,536 ports Port O
® Some ports are reserved for Port 1
specific apps ¢
— 20 & 21: FTP >
99 SSH Port 65535
— 23: Telnet
— 25: SMTP O A socket provides an interface
— 53: DNS to send data to/from the
— 80: HTTP network through a port
— 110: POP3
— 143:. IMAP
— 443 HTTPS

— 465: SMTPS

® [ike apartments and mailboxes
— You are the Application
— Your home address is the IP address
— Your mailbox is the port
— The Post Office is the network

® Q: How do you choose which port to connects a socket?

#include <netinet/in.h>

/* Internet address structure */
struct in addr {

u long s addr; /* 32-bit IPv4 address */
b2 /* network byte ordered */

/* Socket address, Internet style. */
struct sockaddr in {
u char sin family; /* Address Family */
u_short sin port; /* UDP or TCP Port# */
/* network byte ordered */
struct in addr sin addr; /* Internet Address */
char sin zerol[8]; /* unused */

[

® sin family = AF INET selects Internet address family

union {
u int32 t addr; /* 4 bytes address */

char cl[4];
}oun;

/* 128.2.194.95 */
un.addr = 0x8002c25f;
/* c[0] = 2 */
c[0] c[l] c[2] c[3]
®Big Endian | 128 | 2 | 194 | 95
—Sun Solaris, PowerPC, ...
® Little Endian ‘ 05 194) 128

—1386, alpha, ...
® Network byte order = Big Endian

10

® Address and port are stored as integers

—u_short sin_port; (16 bit) struct in_addr {
—in_addr sin_addr; (32 bit) u_long s_addr;
I3
 Problem:

O different machines / OS's use different word orderings
Olittle-endian: lower bytes first
Obig-endian: higher bytes first

O these machines may communicate with one another over the
network

Little-Endian
machine

Big-Endian
machine

29]95]50] 2

11

e u_long htonl(u_long x); ® u_long ntohl(u_long x);
e u_short htons(u_short x); ® u_short ntohs(u_short x);

O On big-endian machines, these routines do nothing

3 On little-endian machines, they reverse the byte
order

Big-Endian

Little-Endig

machine

2] 55]50] 2

O Same code would have worked regardless of endian-
ness of the two machines

29]95]50] 2

12

® Converts between host byte order and network byte order

— ‘h’ = host byte order

— ‘n’ = network byte order

— ‘I’ = long (4 bytes), converts IP addresses
— ‘s’ = short (2 bytes), converts port numbers

#include <netinet/in.h>

unsigned long int htonl (unsigned long int hostlong) ;
unsigned short i1nt htons (unsigned short int
hostshort) ;

unsigned long int ntohl (unsigned long int netlong);
unsigned short i1nt ntohs (unsigned short int
netshort) ;

13

Web Server

Port 80

TCP

A 4

IP

I

Ethernet Adapter

® For example: web server

® What does a web server need to
do so that a web client can
connect to it?

14

® Since web traffic uses TCP, the web server must create a socket of type
SOCK STREAM (connection-oriented)

int £d; /* socket descriptor */

if ((fd = socket (AF INET, SOCK STREAM, 0)) < 0) {
perror (“socket”) ;
exit (1)

}

® socket returns an integer (socket descriptor)

—fd < 0 indicates that an error occurred
® AF INET associates a socket with the Internet protocol family
® SOCK STREAM selects the TCP protocol

® In some Unixes, need to compile with —Isocket -Insl to link in socket libraries
15

® A socket can be bound to a port

int fd; /* socket descriptor */
struct sockaddr in srv; /* used by bind () */

/* create the socket */

srv.sin family = AF INET; /* use the Internet addr family */
srv.sin port = htons (80); /* bind socket ‘fd’ to port 80*/
/* bind: a client may connect to any of my addresses */
srv.sin addr.s addr = htonl (INADDR ANY) ;

/* INADDR ANY - refers to local machine address */

if (bind (fd, (struct sockaddr*) &srv, sizeof (srv)) < 0) {
perror ("bind"); exit(1l);

® Still not quite ready to communicate with a client...

® listen indicates that the server will accept a connection

int fd; /* socket descriptor */
struct sockaddr in srv; /* used by bind () */

/* 1) create the socket */
/* 2) bind the socket to a port */

if (listen(fd, 5) < 0) {
perror (“listen”) ;
exit (1) ;

}

® Still not quite ready to communicate with a client...

17

® accept blocks waiting for a connection

int fd; /* socket descriptor */
struct sockaddr in srv; /* used by bind() */
struct sockaddr in cli; /* used by accept() */

int newfd; /* returned by accept() */
int cli len = sizeof(cli); /* used by accept() */

/* 1) create the socket */
/* 2) bind the socket to a port */
/* 3) listen on the socket */

newfd = accept(fd, (struct sockaddr*) &cli, &cli len);
if (newfd < 0) {
perror ("accept") ; exit (1),

}

® accept returns a new socket (newfd) with the same properties as the original

socket (fd)

—newfd < 0 indicates that an error occurred "

struct sockaddr in cli; /* used by accept () */
int newfd; /* returned by accept () */
int cli len = sizeof (cli); /* used by accept () */

newfd = accept(fd, (struct sockaddr*) &cli, &cli len);
i1f (newfd < 0) {

perror ("accept") ;

exit (1) ;

}

® How does the server know which client it 1s?
—cli.sin_addr.s_addr contains the client’s IP address
—cli.sin_port contains the client’s port number

® Now the server can exchange data with the client by using
read and write on the descriptor newfd.

® Why does accept need to return a new descriptor?

19

® Passive participant - server
— step 1: listen (for incoming
requests)
— step 3: accept (a request)
— step 4: data transfer

® The accepted connection is on a
new socket

® The old socket continues to
listen for other active
participants

® Active participant - clients

— step 2: request & establish
connection

— step 4: data transfer

DD
< O\
DN <

20

® read can be used with a socket

® read blocks waiting for data from the client but does not guarantee
that sizeof(buf) is read

int fd; /* socket descriptor */
char buf[512]; /* used by read() */
int nbytes; /* used by read() */

/* 1) create the socket */

/* 2) bind the socket to a port */

/* 3) listen on the socket */

/* 4) accept the incoming connection */

1f ((nbytes = read(newfd, buf, sizeof (buf))) < 0) {

perror (“read”); exit(l);

}

21

® For example: web client

e How does a web client connect to
a web server?

2 Web Clients

(2

Ethernet Adapter

22

® [P Addresses are commonly written as strings (“128.192.35.50”), but programs deal

with IP addresses as integers.

Converting strings to numerical address:

struct sockaddr_in SYVvV;

srv.sin addr.s addr = inet addr(“128.192.35.507);
if(srv.sin addr.s addr == (in _addr t) -1) {

fprintf (stderr, "inet addr failed!\n"); exit (1)
}

14

Converting a numerical address to a string:

struct sockaddr in srv;
char *t = inet ntoa(srv.sin addr);
if(t == 0) {
fprintf (stderr, “inet ntoa failed!\n”); exit (1)

14

23

® Gethostbyname provides interface to DNS

® Additional useful calls
—Gethostbyaddr —returns hostent given sockaddr in
—Getservbyname

e Used to get service description (typically port number)
e Returns servent based on name

#include <netdb.h>

struct hostent *hp; /*ptr to host info for remote*/
struct sockaddr in peeraddr;
char *name = “odin.trentu.ca”;

peeraddr.sin family = AF INET;
hp = gethostbyname (name)
peeraddr.sin addr.s addr = ((struct in addr*) (hp->h addr))->s addr;

24

® connect allows a client to connect to a server...

int fd; /* socket descriptor */
struct sockaddr in srv; /* used by connect () */

/* create the socket */

/* connect: use the Internet address family */
srv.sin family = AF INET;

/* connect: socket ‘fd’ to port 80 */
srv.sin port = htons (80);

/* connect: connect to IP Address “192.197.151.70"” =*/
srv.sin addr.s addr = inet addr(%“192.197.151.70");

if (connect(fd, (struct sockaddr*) &srv, sizeof(srv)) < 0)
perror (“connect"); exit(1l);

25

® write can be used with a socket

int fd; /* socket descriptor */
struct sockaddr in srv; /* used by connect () */
char buf[512]; /* used by write() */
int nbytes; /* used by write() */

/* 1) create the socket */
/* 2) connect () to the server */

/* Example: A client could “write” a request to a server */
1if ((nbytes = write(fd, buf, sizeof (buf))) < 0) {

perror (“write”);

exit (1)

26

blocks until

cliend ¢

Passive socket

(server)
sockel()
bind()
listen()
accepl() A::.tn'l': socket
; (client)
]
onnects | sockel()
’ '
i
resumes | = connect()
(Possibly mulliple) data
transfers in either direction
read() - wrile()
wrile() - read()

close()

27

TCP Server

socket ()
bing()
TCP Client listen ()
socget() accett()
v connection establishment
connect () | < > 1
v
write data request ﬂl reaij ()
1 datareply [write ()
read () l
clote() end-of-file notification read ()
v
close ()

28

® associates and (can exclusively) reserves a port for use by
the socket

® int status = bind(sockid, &addrport, size);
—status: error status, = -1 i1f bind failed
—sockid: integer, socket descriptor

—addrport: struct sockaddr, the (IP) address and port of the
machine (address usually set to INADDR _ANY — chooses a local
address)

—size: the size (in bytes) of the addrport structure
® bind can be skipped for both types of sockets.

29

e SOCK DGRAM:

—if only sending, no need to bind. The OS finds a port each time the
socket sends a packet

—if receiving, need to bind

e SOCK_STREAM:

—destination determined during connection setup

—don’t need to know port sending from (during connection setup,
receiving end is informed of port)

30

TCP Server

socket ()
bin%()
TCP Client listen ()
socget() acce%t()
v connection establishment
connect () | < > 1
v
write data request ﬂl reaij ()
1 datareply [write ()
read () l
clote() end-of-file notification read ()
v
close ()

31

® C(alled by passive participant

® int status = listen(sock, queuelen);
— status: 0 if listening, -1 if error
— socKk: integer, socket descriptor

— queuelen: integer, # of active participants that can “wait” for a
connection

— listen is non-blocking: returns immediately

® ints = accept(sock, &name, &namelen);
— S: integer, the new socket (used for data-transfer)
— sock: integer, the orig. socket (being listened on)
— name: struct sockaddr, address of the active participant

— namelen: sizeof(name): value/result parameter
e must be set appropriately before call
e adjusted by OS upon return

— accept is blocking: waits for connection before returning

32

TCP Server

socket ()
biné()
TCP Client listen ()
socget() accett()
¥ connection establishment
connect () | < > 1
v
write data request ﬂl reaij ()
1 datareply [write ()
read () l
clote() end-of-file notification read ()
v
close ()

33

® int status = connect(sock, &nhame, namelen);
—status: 0 if successful connect, -1 otherwise
—sock: integer, socket to be used in connection
—name: struct sockaddr: address of passive participant
—namelen: integer, sizeof(name)

® connect is blocking

34

TCP Server

socket ()
bin%()
TCP Client listen ()
socget() accett()
v connection establishment
connect () | < > 1
v
write data request ﬂl reaii ()
1 data reply write O
read () l
clote() end-of-file notification read ()
?
close ()

35

® With a connection (SOCK_STREAM):
— Use send()/recv() instead of read()/write()

—int count = send(sock, &buf, len, flags);
e count: # bytes transmitted (-1 if error)
e buf: charf], buffer to be transmitted
e len: integer, length of buffer (in bytes) to transmit
o flags: integer, special options, usually just 0

—int count = recv(sock, &buf, len, flags);
e count: # bytes received (-1 if error)
o buf: void[], stores received bytes
e len: # bytes received
o flags: integer, special options, usually just 0

—Calls are blocking [returns only after data is sent (to socket buf) /
received]

36

® When finished using a socket, the socket should be closed:

e status = close(s);

—status: 0 if successful, -1 if error

—S: the file descriptor (socket being closed)
® (Closing a socket

—closes a connection (for SOCK_STREAM)
—frees up the port used by the socket

37

server client
sd=socket(): create socket socket(): create socket

A 4

bind(sd, ...): specify socket address

bind(): specify socket address optional
listen(sd, ...):£pecify that socket v
sellf & lsening sol e, TCP connect(): initialize TCP handshake;
€= = = = == == == = (eturn until TCP handshake is done
connection setup

sd2=accept(sd, ...):
get a connected connection
from the queue for socket sd;

create a new socket identified by sd2 SRR CO 1Y) G S e C

send()/recv(): do 10 on socket sd2

y

close(): done
close(sd2): done

38

#include <sys/socket.h> /* for socket(), connect(), send(), and recv() */
#include <netinet/in.h>

#include <signal.h>

#include <ctype.h>

void catcher(int sig);

int newfd;

main()
{
int fd; /* socket descriptor */
struct sockaddr _in srv; /* used by bind() */
struct sockaddr _in cli; /* used by accept() */
int cli_len = sizeof(cli); /* used by accept() */
int not_done = 1;
char c;

signal(SIGPIPE, catcher);
/* 1) create the socket */
if((fd = socket(AF_INET, SOCK _STREAM, 0)) <0) {
perror(''socket call failed");
exit(1); }
/* 2) bind the socket to a port */
srv.sin_family = AF_INET; /* use the Internet addr family */
srv.sin_port = htons(1700); /* bind socket 'fd' to port 1700 */
/* bind: a client may connect to any of my addresses */

srv.sin_addr.s_addr = htonl(INADDR ANY);
/* INADDR _ANY - refers to local machine address */
if(bind(fd, (struct sockaddr *) &srv, sizeof(srv)) < 0) {
perror(''bind call failed');
exit(1);
}
/* 3) listen on the socket */
if(listen(fd, 5) <0) {
perror("listen call failed');
exit(1);
¥
/* loop looking for messages */
while (not_done)
{
/* 4) accept the incoming connection */
newfd = accept(fd, (struct sockaddr*) &cli, &cli_len);
if(newfd < 0) {
perror("accept call failed");
not_done = 0;

}

/* spawn a child to deal with this connection */
if (fork() == 0)
{
while(recv(newfd, &c, 1, 0) > 0) { /* could use read as well */
¢ = toupper(c);
send(newfd, &c, 1, 0); /* could use write as well */
}
/* when client is no longer sending, close socket and child */
close(newfd);
exit(0);
¥
else /* parent */
close(newfd);

}
}

/* signal handler in case socket becomes disconnected */
void catcher(int sig)

d

signal(SIGPIPE, catcher);

close(newfd);

exit(0);

}

41

#include <sys/socket.h> /* for socket(), connect(), send(), and recv() */
#include <arpa/inet.h> /* for sockaddr_in and inet_addr() */
#include <netinet/in.h>

#include <signal.h>

main()
{
int fd; /* socket descriptor */
struct sockaddr _in srv; /* used by connect() */

char ¢, rc;
int more_data = 1;
/* 1) create the socket */
if((fd = socket(AF_INET, SOCK _STREAM, 0)) <0) {
perror(''socket call failed");
exit(1);
b
/* 2) connect() to the server */
/* connect: use the Internet address family */
srv.sin_family = AF _INET;
/* connect: socket 'fd' to port 1700 */
srv.sin_port = htons(1700);
/* connect: connect to IP Address '192.197.151.70' - odin */
srv.sin_addr.s addr = inet_addr("192.197.151.70");

42

if(connect(fd, (struct sockaddr*) &srv, sizeof(srv)) <0) {
perror('connect call failed'); exit(1);
3
/* send and receive information with the server */
while (more_data)
{
if(c !="\n") /* ignore the enter at the end of the input */
printf("'Input a lower case letter (or 0 to stop) =>");
¢ = getchar();
if(c!="0") {
if(c !'="\n") { /* ignore the enter for processing */
send(fd, &c, 1, 0); /* could use write as well */
if(recv(fd, &rc, 1, 0) > 0) /* could use read as well */
printf("'%c\n", rc);
else {
printf("'Server has died\n");
close(fd);
exit(1);
}
}
}

else
more_data = 0;
h
exit(0);
}

® To compile use

— gCC —0 Server server.c // some versions need —Isocket —Insl

— gcc —o client client.c // some versions need —Isocket —Insl
® To run, start the server first in the background and then the client(s)

$ server &

$ client

Input a lower case letter (or O to stop) =>r

R

Input a lower case letter (or 0 to stop) =1

[

Input a lower case letter (or 0 to stop) =>c¢

C

Input a lower case letter (or O to stop) => h

H

Input a lower case letter (or 0 to stop) => 0

$ kill %1

[1] Terminated server

44

server

socket(): create socket

bind(): specify socket local
IP address and port number

A 4

read()/recvfrom(): receive packets

v

close(): done

client

socket(): create socket

write()/sendto(): send packets to server,

by specifying receiver
address and port number

A 4

close(): done

45

Server

sockel()

!

bind()

¢

I

|

1

i

|

i recufrom()
:

i

|

! sendto()
1

|

(Possibly multiple) data
transfers in either direction

Client

sockel()

sendtof)

!

recufrom()

close()

46

NTP
daemon

Port 123

UDP

IP

1

Ethernet Adapter

® For example: NTP daemon

e What does a UDP server need to do so
that a UDP client can connect to it?

47

® The UDP server must create a datagram socket. ..

int fd; /* socket descriptor */

if ((fd = socket (AF INET, SOCK DGRAM, 0)) < 0)
perror (“socket”) ;
exit (1)

}

® socket returns an integer (socket descriptor)

—fd < 0 indicates that an error occurred

® AF INET: associates a socket with the Internet protocol family

® SOCK DGRAM: selects the UDP protocol

48

® A socket can be bound to a port

struct sockaddr in srv; /* used by bind() */
/* create the socket */

/* bind: use the Internet address family */
srv.sin family = AF INET;

/* bind: socket ‘fd’ to port 80*/
srv.sin port = htons(80);
srv.sin addr.s addr = htonl (INADDR ANY) ;

if (bind (fd, (struct sockaddr*) &srv, sizeof(srv)) < 0)
perror ("bind"),; exit(1l);

}

int fd; /* socket descriptor */

/* bind: a client may connect to any of my addresses */

® Now the UDP server is ready to accept packets...

49

read does not provide the client’s address to the UDP server

int fd; /*
struct sockaddr in srv; /*
struct sockaddr in cli; /*
char buf[512]; /*
int cli len = sizeof (cli); /*
int nbytes; /*

/* 1) create the socket */
/* 2) bind to the socket */

nbytes = recvfrom (fd, buf,

if (nbytes < 0)

perror (%

(struct sockaddr*)

{

recvifrom”); exit (1)

socket descriptor */

used by
used by
used by
used by
used by

sizeof (buf),

&cli,

.
4

bind () */
recvirom (
recvirom (
recvirom (
recvirom (

)
)
)
)

*/
*/
*/
*/

0 /* flags */,

&cli len);

50

nbytes = recvfrom(fd, buf, sizeof(buf), 0 /* flags */,
(struct sockaddr*) cli, &cli len);

® The actions performed by recvfrom

—returns the number of bytes read (nbytes)
—copies nbytes of data into buf

—returns the address of the client (cli)
—returns the length of cli (cli_len)

—don’t worry about flags

51

® How does a UDP client communicate

with a UDP server?

ports

/

2 UDP Clients

(2

Ethernet Adapter

52

® write is not allowed
® Notice that the UDP client does not bind a port number
— aport number is dynamically assigned when the first sendto is called

int fd; /* socket descriptor */
struct sockaddr in srv; /* used by sendto() */

/* 1) create the socket */

srv.sin family = AF INET;
srv.sin port = htons (80);
srv.sin addr.s addr = inet addr(“192.197.151.70");

nbytes = sendto(fd, buf, sizeof (buf), 0 /* flags */,
(struct sockaddr*) &srv, sizeof (srv));
if (nbytes < 0) {
perror (“sendto”) ; exit (1),

/* sendto: send data to IP Address “192.197.151.70” port 80 */

53

UDP Server

socket ()
bing()
UDP Client f* 0
recvirom() |
socket ()
1 blocks until datagram
> sendto () data request received from a client
! data reply sendto ()
recvirom ()
v
close ()

54

#include <sys/socket.h> /* for socket(), connect(), send(), and recv() */
#include <netinet/in.h>
#include <signal.h>

#include <ctype.h>
main()
{
int fd; /* socket descriptor */
struct sockaddr_in srv; /* used by bind() */
struct sockaddr _in cli; /* used by sendto(), recvfrom() */
int cli_len = sizeof(cli); /* used by sendto(), recvfrom() */
int not_done =1;
char c;

/* 1) create the socket */
if((fd = socket(AF_INET, SOCK_DGRAM, 0)) <0) {
perror(''socket call failed");
exit(1);
}
/* 2) bind the socket to a port */
srv.sin_family = AF_INET; /* use the Internet addr family */
srv.sin_port = htons(1700); /* bind socket 'fd' to port 1700 */
/* bind: a client may connect to any of my addresses */
srv.sin_addr.s_addr = htonl(INADDR ANY);
/* INADDR _ANY - refers to local machine address */

55

if(bind(fd, (struct sockaddr *) &srv, sizeof(srv)) <0) {
perror(''bind call failed');
exit(1);
}
/* loop looking for messages */
while(not_done)
{
/* 3) receive a message */
if(recvfrom(fd, &c, 1, 0, (struct sockaddr *) &cli, &cli_len) <0) {
perror(''Server: receiving');
not_done = 0;
}
¢ = toupper(c);
/* send the message back to where it came from */
if(sendto(fd, &c, 1, 0, (struct sockaddr *) &cli, cli_len) <0) {
perror('"Server: sending');
not_done = 0;
}
}
exit(0);
}

56

#include <sys/socket.h> /* for socket(), connect(), send(), and recv() */
#include <arpa/inet.h> /* for sockaddr_in and inet_addr() */
#include <netinet/in.h>
#include <signal.h>
main()
{
int fd; /* socket descriptor */
struct sockaddr _in srv; /* used by sendto() */
int srv_len = sizeof(srv);
char c;
int more_data = 1;
/* 1) create the socket */
if((fd = socket(AF_INET, SOCK_DGRAM, 0)) <0) {
perror(''socket call failed");
exit(1);
b
/* set up the server information for the sendto */
srv.sin_family = AF _INET;
/* port number */
srv.sin_port = htons(1700);
/* IP Address '192.197.151.70' - odin */
srv.sin_addr.s addr = inet_addr("192.197.151.70");

57

/* send and receive information with the server */
while (more_data)
{
if(c !="\n") /* ignore the enter at the end of the input */
printf("'Input a lower case letter (or 0 to stop) =>");
¢ = getchar();
if(c !="0") {
if(c !="\n") { /* ignore the enter for processing */
if (sendto(fd, &c, 1, 0, (struct sockaddr *) &srv, srv_len) <0) {
perror(''Client: sending'');
exit(1);
}
if (recvfrom(fd, &c, 1, 0, (struct sockaddr *) &srv, &srv_len) < 0) {
perror(''Client: receiving');

exit(1);
}
printf("' %c\n", c);
}
}
else
more_data = 0;
}
exit(0);

}

58

® To compile use

— gcc —o serverl serverl.c // some versions need —Isocket —Insl

— gcc —o clientl clientl.c // some versions need —Isocket —Insl
® To run, start the server first in the background and then the client(s)

$ serverl &

$ clientl

Input a lower case letter (or O to stop) =>r

R

Input a lower case letter (or 0 to stop) =1

[

Input a lower case letter (or 0 to stop) =>c¢

C

Input a lower case letter (or O to stop) => h

H

Input a lower case letter (or 0 to stop) => 0

$ kill %1

[1] Terminated serverl

59

Port 3000

UDP Server

Port 2000

Ethernet Adapter

e How can the UDP server
service multiple ports
simultaneously?

60

}

int sl1;

int s2;

int not done = 1;

/* 1) create socket sl */

/* 2) create socket s2 */

/* 3) bind sl to port 2000 */
/* 4) bind s2 to port 3000 */

while (not done) {

recvfrom(sl, buf,
/* process buf */

recvfrom(s2, buf,
/* process buf */

sizeof (buf),

sizeof (buf),

/* socket descriptor 1 */
/* socket descriptor 2 */

® What problems does this code have?

61

® Many of the functions we saw block until a certain event
—accept: until a connection comes in
—connect: until the connection is established
—recyv, recvfrom: until a packet (of data) is received
—send, sendto: until data 1s pushed into socket’s buffer

® For simple programs, blocking 1s convenient

® What about more complex programs?
— multiple connections
—simultaneous sends and receives

—simultaneously doing non-networking processing

62

® Options:
—create multi-process or multi-threaded code

—turn off the blocking feature (e.g., using the fcntl file-descriptor
control function)

—use the select function call.

® What does select() do?

—can be permanent blocking, time-limited blocking or non-blocking
—input: a set of file-descriptors
—output: info on the file-descriptors’ status

—1.¢., can 1dentify sockets that are “ready for use”: calls involving
that socket will return immediately

63

e int status = select(nfds, &readfds, &writefds, &exceptfds,
&timeout);
—status: # of ready objects, -1 if error
—nfds: 1 + largest file descriptor to check
—readfds: list of descriptors to check if read-ready
— writefds: list of descriptors to check if write-ready
—exceptfds: list of descriptors to check if an exception is registered

—timeout: time after which select returns, even if nothing ready - can be 0
or OO

(point timeout parameter to NULL for OO)

64

® Recall select uses a structure, struct fd_set
— 1t 1s just a bit-vector
—if bit i is set in [readfds, writefds, exceptfds], select will check if
file descriptor (i.e. socket) i is ready for [reading, writing,
exception]
® Before calling select:
—FD_ ZERO(&fdvar): clears the structure
—FD_SET(i, &fdvar): to check file desc. i

® After calling select:
—int FD_ISSET(i, &fdvar): boolean returns TRUE iff i is “ready”

65

int select(int maxfds, fd set
fd set *exceptfds,

FD CLR(int fd, fd set *fds);
FD ISSET (int fd, fd set *fds);
FD SET (int fd, fd set *fds);
FD ZERO (fd set *fds);

/*
/*
/*
/*

*readfds, fd set *writefds,
struct timeval *timeout)

clear the bit for fd in fds */
is the bit for fd in fds? */
turn on the bit for fd in fds
clear all bits in fds */

*/

maxfds: number of descriptors to be tested

— descriptors (0, 1, ... maxfds-1) will be tested

readfds: a set of fds we want to check if data is available

— returns a set of fds ready to read

— if input argument is NULL, not interested in that condition

writefds: returns a set of fds ready to write

exceptfds: returns a set of fds with exception conditions

66

int select (int maxfds, fd set *readfds, fd set *writefds,
fd set *exceptfds, struct timeval *timeout);

struct timeval {
long tv sec; /* seconds /
long tv usec; /* microseconds */

}

® timeout
— 1f NULL, wait forever and return only when one of the descriptors is ready for I/0

— otherwise, wait up to a fixed amount of time specified by timeout
e if we don’t want to wait at all, create a timeout structure with timer value equal to 0

® Refer to the man page for more information

67

® select allows synchronous I/O multiplexing

*/

int sl1, s2; /* socket descriptors */
fd set readfds; /* used by select() */
int not done = 1;

/* create and bind sl and s2 */
while (not done)

FD ZERO (&readfds) ; /* initialize the fd set

FD SET (sl, &readfds); /* add sl to the fd set */
FD SET(s2, &readfds); /* add s2 to the fd set */

if (select(s2+1, &readfds, 0, 0, 0) < 0) {
perror (“select”);
exit (1) ;

}

if (FD_ISSET (sl, &readfds)) {
recvfrom(sl, buf, sizeof(buf), ...);
/* process buf */

}

/* do the same for s2 */

68

Port

Web Server

TCP

IP

1

Ethernet Adapter

How can a a web server manage
multiple connections simultaneously?

69

int fd, next=0; /* original socket */
int newfd[10]; /* new socket descriptors */
int not done = 1;
while (not done) {

fd set readfds;

FD ZERO (&readfds); FD_SET (fd, &readfds);

/* Now use FD SET to initialize other newfd’s
that have already been returned by accept () */

select (maxfd+1l, &readfds, 0, 0, 0);
if (FD_ISSET (fd, &readfds)) {
newfd[next++] = accept(fd, ...);

}

/* do the following for each descriptor newfd[n] */

if (FD_ISSET (newfd[n], &readfds)) {
read (newfd[n], buf, sizeof (buf));
/* process data */

}

® Now the web server can support multiple connections...

70

bzero(char® ¢, int n): 0’s n bytes starting at c

gethostname(char *name, int len): gets the name of the current host
gethostbyaddr(char *addr, int len, int type): converts IP hostname
to structure containing long integer

inet_addr(const char *cp): converts dotted-decimal char-string to
long integer

inet_ntoa(const struct in_addr in): converts long to dotted-decimal
notation

Warning: check function assumptions about byte-ordering (host or
network). Often, they assume parameters / return solutions in network
byte-order

71

