CSE 321 - Homework Assignment #4

Preamble

You will complete this homework in small groups, assigned randomly by Canvas. Please check Canvas
for your group.

Turn in a PDF and other files to canvas by the deadline. It can be a scan of handwritten work, if that is
your preference. However, it must be legible in that case!

You may post questions to the related Discussion board, but do not share any of your work/solutions.

Please review the course syllabus and first lecture for a reminder of what is acceptable collaboration
(outside of your group) and what is not. Ask me if you are unclear.

Start early!

Contribution Declaration
You must describe each person’s contribution as a separate section of the homework.

Office Hour Reminder

e Julius Higiro, higirodj@miamioh.edu , Monday 730pm-9pm Benton 001
e Liam Mosley, mosleyIim@miamioh.edu , Tuesday 730pm-9pm Benton 002
e Dr. Stephan, matthew.stephan@miamioh.edu, Tuesdays and Thursdays 230-4



mailto:higirodj@miamioh.edu
mailto:mosleylm@miamioh.edu
mailto:matthew.stephan@miamioh.edu

Questions
Question 1 (30 points)

d)

e)

f)

g)

Answer questions a-g for the graph defined by the following sets:
- N=1,2,3,4,5,6,7/

N = 11}
- Ny= {17
- E={1,2),1,7),(2,3), (2, 4), (3, 2), (4,5), (4, 6), (5, 6), (6, 1)/

Also consider the following (candidate) test paths:
"p =[1,2,4,56,1,7]

", =1[1,2,3,2,4,6,1,7]
.p3:[1)2)3)2)4)5)6)157]

Draw the graph. (4 points)

List the test requirements for Edge-Pair Coverage. (Hint: You should get 12 requirements
of length 2 (3 nodes) ) (6 points)

Does the given set of test paths satisfy Edge-Pair Coverage? If not, state what is
missing. (2 points)

Consider the simple path [3, 2, 4, 5, 6] and test path [1, 2, 3, 2, 4, 6, 1, 2, 4, 5, 6,1,
7]. Does the test path tour the simple path directly? With a sidetrip? If so, write down
the sidetrip. (3 points)

List the test requirements for Node Coverage (1 point), Edge Coverage (4 points), and
Prime Path Coverage on the graph. (6 points)

List test paths from the given set that achieve Node Coverage but not Edge Coverage
on the graph. (2 points)

List test paths from the given set that achieve Edge Coverage but not Prime Path
Coverage on the graph. (2 points)



Question 2 (17 points)

Consider the method printPrimes() for questions a—e below from the compliable version on Canvas
in the file PrintPrimes.java. A line-numbered version suitable for this exercise is available on Canvas as
PrintPrimes.num. The following is a control flow graph for it. Use this graph to answer questions a-e.

primes[0] = 2

% n is initialized
1 numPrimes =1

curPrime =2

v N\
2
numPrimes >=n A numPrimes < n
& [ D) curPrime++
(11 i=0 3 isPrime = true
< i=0
Y : )
» 12 4
T i

i < = numPrimes-1
i<= numPrimes-1
—»

. i > numPrimes-1 ‘
13 | print 5
[ | isDivisible(primesl[i], curPrime)
| | NOT isDivisible()
y i > numPrimes-1 ‘ » : .
/ . . isPrime = false
14 i++ 7 i+t [ 6 e
' \
8 =
v [ isPrime
NOT isPrime Y

[ 15
. 9 | primes[numPrimes] = curPrime
numPrimes++

(a) Consider test cases t| = (n=3)and t) = (n =5). Although these tour the same prime
paths in printPrimes(), they do not necessarily find the same faults. Design a simple
fault that t would be more likely to discover than t; would. (2 points)

(b) For printPrimes(), find a test case such that the corresponding test path
visits the edge that connects the beginning of the while statement to the for
statement without going through the body of the while loop. ( 2 points)

(c) List the test requirements for Node Coverage (1 point), and Edge Coverage (9
points)

(d) List test paths that achieve Node Coverage but not Edge Coverage on the graph.
(2 points)

(e) List test paths that achieve Edge Coverage but not Prime Path Coverage on the
graph. (2 points)



Question 3 (12 points)
Use the following methods trash() and takeOut() to answer questions a—c. You can find the code on

Canvas.
1 public void trash (int x) 15 public int takeOut (int a, int b)
2 { 16 {
3 int m, n; 17 int d, e;
4 18
5 m= 0; 19 d = 42%*a;
6 if (x > 0) 20 if (a > 0)
7 m= 4; 21 e = 2*xb+d;
8 if (x > 5) 22 else
9 n = 3x*m; 23 e = b+d;
10 else 24 return (e);
11 n = 4xm; 25 }
12 int o = takeOut (m, n);
13 System.out.println ("o is: " + o0);
14 }

a) Give all call sites using the line numbers given. (2 points)

b) Give all pairs of last-defs and first-uses. (4 points)

c) Provide testinputs that satisfy all-coupling-uses (note that trash() only has one input).
(6 points)



CSE 321 Homework #4 Due March 29%, 2017
Question 4 (16 points)

Use the class BoundedQueue2 for questions a—f below. A compilable version is available on Canvas in the file
BoundedQueue2.java. The queue is managed in the usual circular fashion.

Suppose we build a FSM where states are defined by the representation variables of BoundedQueue2. That is, a state is a
4-tuple defined by the values for [elements, size, front, back]. For example, the initial state has the value [[null,
null], 0, 0, 0], and the state that results from pushing an object obj onto the queue in its initial state is [[obj, null],
1, 0, 1].

a) We do not actually care which specific objects are in the queue. Consequently, there are really just
four useful values for the variable elements. What are they? (2 points)

b) How many states are there? (2 points)

c¢) How many of these states are reachable? (2 points) (you can answer this in part d)

d) Show the reachable states in a drawing. (4 points)

e) Add edges for the enQueue() and deQueue() methods. (For this assignment, ignore the exceptional
returns, although you should observe that when exceptional returns are taken, none of the instance variables are
modified.) (you can answer this in part d) (3 points)

f) Define a small test set that achieves Edge Coverage. Implement and execute this test set. You might
find it helpful to write a method that shows the internal variables at eachcall. (3 points)



