
CSE 321 – Homework Assignment #4

Preamble
You will complete this homework in small groups, assigned randomly by Canvas. Please check Canvas

for your group.

Turn in a PDF and other files to canvas by the deadline. It can be a scan of handwritten work, if that is

your preference. However, it must be legible in that case!

You may post questions to the related Discussion board, but do not share any of your work/solutions.

Please review the course syllabus and first lecture for a reminder of what is acceptable collaboration

(outside of your group) and what is not. Ask me if you are unclear.

Start early!

Contribution Declaration
You must describe each person’s contribution as a separate section of the homework.

Office Hour Reminder

 Julius Higiro, higirodj@miamioh.edu , Monday 730pm-9pm Benton 001
 Liam Mosley, mosleylm@miamioh.edu , Tuesday 730pm-9pm Benton 002
 Dr. Stephan, matthew.stephan@miamioh.edu, Tuesdays and Thursdays 230-4

mailto:higirodj@miamioh.edu
mailto:mosleylm@miamioh.edu
mailto:matthew.stephan@miamioh.edu

Questions

Question 1 (30 points)
Answer questions a–g for the graph defined by the following sets:

• N = {1, 2, 3, 4, 5, 6, 7}

• N0 = {1}

• Nf = {7}

• E = {(1, 2), (1, 7), (2, 3), (2, 4), (3, 2), (4, 5), (4, 6), (5, 6), (6, 1)}

Also consider the following (candidate) test paths:

• p1 = [1, 2, 4, 5, 6, 1, 7]

• p2 = [1, 2, 3, 2, 4, 6, 1, 7]

• p3 = [1, 2, 3, 2, 4, 5, 6, 1, 7]

a) Draw the graph. (4 points)

b) List the test requirements for Edge-Pair Coverage. (Hint: You should get 12 requirements

of length 2 (3 nodes)) (6 points)

c) Does the given set of test paths satisfy Edge-Pair Coverage? If not, state what is

missing. (2 points)

d) Consider the simple path [3, 2, 4, 5, 6] and test path [1, 2, 3, 2, 4, 6, 1, 2, 4, 5, 6, 1,

7]. Does the test path tour the simple path directly? With a sidetrip? If so, write down

the sidetrip. (3 points)

e) List the test requirements for Node Coverage (1 point), Edge Coverage (4 points), and

Prime Path Coverage on the graph. (6 points)

f) List test paths from the given set that achieve Node Coverage but not Edge Coverage

on the graph. (2 points)

g) List test paths from the given set that achieve Edge Coverage but not Prime Path

Coverage on the graph. (2 points)

Question 2 (17 points)
Consider the method printPrimes() for questions a–e below from the compliable version on Canvas

in the file PrintPrimes.java. A line-numbered version suitable for this exercise is available on Canvas as

PrintPrimes.num. The following is a control flow graph for it. Use this graph to answer questions a-e.

(a) Consider test cases t1 = (n = 3) and t2 = (n = 5). Although these tour the same prime

paths in printPrimes(), they do not necessarily find the same faults. Design a simple

fault that t2 would be more likely to discover than t1 would. (2 points)

(b) For printPrimes(), find a test case such that the corresponding test path
visits the edge that connects the beginning of the while statement to the for

statement without going through the body of the while loop. (2 points)
(c) List the test requirements for Node Coverage (1 point), and Edge Coverage (9

points)
(d) List test paths that achieve Node Coverage but not Edge Coverage on the graph.

(2 points)

(e) List test paths that achieve Edge Coverage but not Prime Path Coverage on the
graph. (2 points)

Question 3 (12 points)
Use the following methods trash() and takeOut() to answer questions a–c. You can find the code on

Canvas.

a) Give all call sites using the line numbers given. (2 points)

b) Give all pairs of last-defs and first-uses. (4 points)

c) Provide test inputs that satisfy all-coupling-uses (note that trash() only has one input).

(6 points)

CSE 321 Homework #4 Due March 29th, 2017

Question 4 (16 points)
Use the class BoundedQueue2 for questions a–f below. A compilable version is available on Canvas in the file

BoundedQueue2.java. The queue is managed in the usual circular fashion.

Suppose we build a FSM where states are defined by the representation variables of BoundedQueue2. That is, a state is a

4-tuple defined by the values for [elements, size, front, back]. For example, the initial state has the value [[null,

null], 0, 0, 0], and the state that results from pushing an object obj onto the queue in its initial state is [[obj, null],

1, 0, 1].

a) We do not actually care which specific objects are in the queue. Consequently, there are really just

four useful values for the variable elements. What are they? (2 points)

b) How many states are there? (2 points)

c) How many of these states are reachable? (2 points) (you can answer this in part d)

d) Show the reachable states in a drawing. (4 points)

e) Add edges for the enQueue() and deQueue() methods. (For this assignment, ignore the exceptional

returns, although you should observe that when exceptional returns are taken, none of the instance variables are

modified.) (you can answer this in part d) (3 points)

f) Define a small test set that achieves Edge Coverage. Implement and execute this test set. You might

find it helpful to write a method that shows the internal variables at each call. (3 points)

