InFix.java

import java.util.EmptyStackException;

import java.util.Stack;

public class InFix

{

 Stack<String> operandsStk;

 Stack<Character> operatorsStk;

 InFix()

 {

 operandsStk=new Stack<String>();

 operatorsStk=new Stack<Character>();

 }

 public int evaluate(String exp) throws ArithmeticException

 {

 boolean fail=false;

 try

 {

 //Tokenize the string containing the expression while there are more tokens

 String tokens[]=exp.split(" ");

 for(int i=0;i<tokens.length;i++)

 {

 //if it is an operand push it onto the operand stack

 if(!tokens[i].equals("+")&& !tokens[i].equals("*")&&!tokens[i].equals("-")

 &&!tokens[i].equals("/") && !tokens[i].equals("(")&&!tokens[i].equals(")"))

 {

 operandsStk.push(tokens[i]);

 }

 //else if it is a left parenthesis

 else if(tokens[i].equals("("))

 {

 //push it onto the operator stack

 operatorsStk.push((Character)tokens[i].charAt(0));

 }

 //else if is a right parenthesis

 else if(tokens[i].equals(")"))

 {

 //while top of the operator stack not a left parenthesis

 while(operatorsStk.peek()!='(')

 {

 // pop two operands and an operator

 int x=Integer.parseInt(operandsStk.pop());

 int y=Integer.parseInt(operandsStk.pop());

 char opr=operatorsStk.pop();

 // perform the calculation

 int result=0;

 if (opr=='+')

 {

 result= y+x;

 //push the result onto the operand stack

 operandsStk.push(result+"");

 }

 else if(opr=='-')

 {

 result= y-x;

 //push the result onto the operand stack

 operandsStk.push(result+"");

 }

 else if(opr=='*')

 {

 result= y*x;

 //push the result onto the operand stack

 operandsStk.push(result+"");

 }

 else if(opr=='/')

 {

 result=y/x;

 //push the result onto the operand stack

 operandsStk.push(result+"");

 }

 }

 }

 //else if it is an operator

 else if(tokens[i].equals("+")||tokens[i].equals("-")

 ||tokens[i].equals("*")||tokens[i].equals("/"))

 {

 //while the operator stack is not empty and the operator at the top of the stack has higher

 //or the same precedence than the current operator

 while(!operatorsStk.empty()&&hasHigherPrecedence(operatorsStk.peek(),tokens[i].charAt(0)))

 {

 //pop two operands

 int x=Integer.parseInt(operandsStk.pop());

 int y=Integer.parseInt(operandsStk.pop());

 char opr=operatorsStk.pop();

 //perform the calculation

 int result=0;

 if (opr=='+')

 {

 result= y+x;

 //push the result onto the operand stack

 operandsStk.push(result+"");

 }

 else if(opr=='-')

 {

 result= y-x;

 //push the result onto the operand stack

 operandsStk.push(result+"");

 }

 else if(opr=='*')

 {

 result= y*x;

 //push the result onto the operand stack

 operandsStk.push(result+"");

 }

 else if(opr=='/')

 {

 result=y/x;

 //push the result onto the operand stack

 operandsStk.push(result+"");

 }

 }

 // Push the current operator on the operators stack
 operatorsStk.push(tokens[i].charAt(0));

 }

 }

 //while the operator stack is not empty

 while(!operatorsStk.empty())

 {

 // pop two operands and an operator

 int x=Integer.parseInt(operandsStk.pop());

 int y=Integer.parseInt(operandsStk.pop());

 char opr=operatorsStk.pop();

 //perform the calculation

 int result=0;

 if (opr=='+')

 {

 result= y+x;

 // push the result onto the operand stack

 operandsStk.push(result+"");

 }

 else if(opr=='-')

 {

 result= y-x;

 // push the result onto the operand stack

 operandsStk.push(result+"");

 }

 else if(opr=='*')

 {

 result= y*x;

 // push the result onto the operand stack

 operandsStk.push(result+"");

 }

 else if(opr=='/')

 {

 result=y/x;

 // push the result onto the operand stack

 operandsStk.push(result+"");

 }

 }

 }

 catch(EmptyStackException e)

 {

 	 fail=true;

 }

 if(fail==false)

 //the final result is at the top of the operand stack

 return Integer.parseInt(operandsStk.pop());

 else

 return -1;

 }

 //returns true, if the top has high precedence than current

 boolean hasHigherPrecedence(char top, char current)

 {

 int topPre=-1;

 int curPre=-1;

 if(top == '+' || top == '-')

 {

 topPre=0;

 }

 if(top == '*' || top == '/' || top== '%')

 {

 topPre=1;

 }

 if(current == '+' || current == '-')

 {

 curPre=0;

 }

 if(current == '*' || current == '/')

 {

 curPre=1;

 }

 if(topPre>=curPre)

 return true;

 else

 return false;

 }

GUI.java

import java.awt.FlowLayout;

import java.awt.GridLayout;

import java.awt.event.ActionEvent;

import java.awt.event.ActionListener;

import java.util.EmptyStackException;

import java.util.Stack;

import javax.swing.JButton;

import javax.swing.JFrame;

import javax.swing.JLabel;

import javax.swing.JOptionPane;

import javax.swing.JPanel;

import javax.swing.JTextField;

import javax.swing.SwingConstants;

public class GUI extends JFrame implements ActionListener

{

	private static final long serialVersionUID = 1L;

	JTextField userInput;

 JLabel input,result,hint;

 JPanel inputPanel,resultPanel;

 JButton evaluate;

 Stack<Object>stk;

 GUI()

 {

 //Main GUI

 super("Infix Expression Evaluator");

 inputPanel=new JPanel(new FlowLayout());

 resultPanel=new JPanel(new FlowLayout());

 setLayout(new GridLayout(2,1));

 userInput =new JTextField(30);

 hint=new JLabel("Example: (3 * 3) 7. Make sure to leave spacing. Use only (,), +, -, * , / ");

 input=new JLabel("Enter Infix Expression:");

 evaluate=new JButton("Evaluate");

 evaluate.addActionListener(this);

 result=new JLabel("Result:",SwingConstants.LEFT);

 add(inputPanel);

 add(resultPanel);

 inputPanel.add(input);

 inputPanel.add(userInput);

 inputPanel.add(hint);

 inputPanel.add(evaluate);

 resultPanel.add(result);

 stk=new Stack<Object>();

 }

 public static void main(String args[])

 {

 GUI gui=new GUI();

 gui.setVisible(true);

 gui.setSize(500,300);

 }

 boolean isBalance(String exp)

 {

 int index = 0;

 boolean fail = false;

 int length=exp.length();

 try

 {

 while (index < length && !fail)

 {

 char ch = exp.charAt(index);

 switch(ch)

 {

 case '(':

 stk.push(new Character(ch));

 break;

 case ')':

 char rightBrace=(char)stk.pop();

 if(rightBrace!='(')

 fail=true;

 break;

 default:

 break;

 }

 index++;

 }

 }

 catch(EmptyStackException e)

 {

 fail = true;

 }

 return stk.empty() && !fail;

 }

 public void actionPerformed(ActionEvent arg0)

 {

 InFix infix=new InFix();

 String expression=userInput.getText();

 //Call is evaluated if balance

 if(isBalance(expression))

 {

 try

 {

 int answer=infix.evaluate(expression);

 //Result display here

 if(answer==-1)

 result.setText("Result: Expresssion is not balanced.");

 else

 result.setText("Result: " +answer);

 }

 //Error message for dividing by 0

 catch(ArithmeticException e)

 {

 JOptionPane.showMessageDialog(this, "You cannot divide by Zero. Try again!",

 "ERROR",

 JOptionPane.ERROR_MESSAGE);

 }

 }

 //Error message if not balance

 else

 result.setText("Result: Expresssion is not balanced.");

 userInput.setText("");

 }

[bookmark: _GoBack]}

s

s .

[E——

e g) s Atscen
'
‘
R ———
Songttenian o

[E R ——

