
COMP1406 - Assignment #9
(Due: Monday, March 27th @ 12 noon)

In this assignment we will simulate an Taxi Service Dispatching System that
manages a fleet of taxis within a city. The system will keep track of roughly
which taxis are in certain pre-defined areas of the city and it will have the
ability to send taxis to certain areas of the city. Since some cities have many
taxis (such as New York which has over 12,000 yellow cabs), finding an available taxi may be a time-
consuming task. We will use two HashMaps in our system that will allow us to quickly find taxi
information based on the taxi plate number and also to quickly find an available taxi to send out for
pickup. The main purpose of the assignment is to get familiar with Hashmaps and Arraylists,
although we will also use 2D arrays and you will get some more practice towards improving your
"problem-solving" skills. The GUI parts of the assignment have already been completed for you.

(1) The Taxi Class

Download the Taxi class that represents a taxi in the system. It looks as follows:

public class Taxi {
 private int plateNumber;
 private boolean available;
 private String destination;
 private int estimatedTimeToDest;

 public int getPlateNumber() { return plateNumber; }
 public boolean getAvailable() { return available; }
 public String getDestination() { return destination; }
 public int getEstimatedTimeToDest() { return estimatedTimeToDest; }

 public void setAvailable(boolean avail) { available = avail; }
 public void setDestination(String d) { destination = d; }
 public void setEstimatedTimeToDest(int t) { estimatedTimeToDest = t; }

 public void decreaseEstimatedTimeToDest() {
 estimatedTimeToDest--;
 }

 public Taxi (int plate) {
 plateNumber = plate;
 available = true;
 destination = "";
 estimatedTimeToDest = 0;
 }

 public String toString() {
 if (available)
 return plateNumber + " (available)";
 return plateNumber + "(" + estimatedTimeToDest + ")";
 }
}

Note that taxis are considered unavailable if they are (1) on their way to pick up a passenger (i.e., en-
route) or (2) if they currently have a passenger.

Create an equals() method for Taxis (making sure that the parameter is of type Object, not of type
Taxi!!!). Two taxis should be equal if and only if their plate numbers are equal.

(2) The DispatchCenter Class

Download the class called DispatchCenter that represents the model for the Taxi Service
Dispatching System. You must add attributes to this code and complete the various methods as
described below. The DispatchCenter should maintain a HashMap called taxis that keeps taxi plate
numbers (i.e., Integers) as keys and the values being the Taxi object that has that plate number.
This allows us to quickly find a taxi when given its plate number only.

The DispatchCenter should also maintain a HashMap called areas that keeps a city's "area name"
as the keys and the values being ArrayLists of all taxis that are currently in that area. The areas are
places in the city that can be serviced by the taxi cabs. Note that there are exactly 6 areas that we
will specify in this assignment. They are: "North", "South", "East", "West", "Downtown" and "Airport"
(conveniently defined as AREA_NAMES in the code you were given). It will be assumed that taxis
travel between these areas when making service calls (although a call may allow a taxi to stay within
the same area). Note that when a taxi drives to a new area, its location will change within this
HashMap. Also note that a taxi may be in only one of these ArrayLists at a time.

Complete the addTaxi() method that adds a taxi to the dispatch center. It should take a Taxi object
as a parameter as well as the initial starting area for the taxi (e.g., "North"). Your method should add
the taxi to both HashMaps in the appropriate manner.

Complete the zero parameter constructor so that it initializes the taxis HashMap with 50 taxis that
have random plate numbers ranging from 100 to 999. Also, the areas HashMap should be initialized
with the 6 fixed areas mentioned earlier. Each taxi should be randomly assigned to one of the 6
areas upon initialization. To assign the taxis to the HashMaps, you MUST make use of the
addTaxi() method written above. See the picture below as an example of how things should be
organized.

(3) The TaxiServiceDispatchSystem Class

Download the TaxiServiceDispatchSystem code. It is an application that , when run, should
display the information from the dispatch center. This window has been constructed for you already,
using your DispatchCenter as its model:

The application displays the incoming client requests on the left. This represents people who are
waiting for a taxi ... it indicates where they are waiting to be picked up and where they want to be
dropped off. Each request is represented by the following ClientRequest class, which you should
download as well:

public class ClientRequest {
 private String pickupLocation;
 private String dropOffLocation;

 public String getPickupLocation() { return pickupLocation; }
 public String getDropoffLocation() { return dropOffLocation; }

 public ClientRequest (String p, String d) {
 pickupLocation = p;
 dropOffLocation = d;
 }

 public String toString() {
 return pickupLocation + " ==> " + dropOffLocation;
 }
}

In the remaining 6 lists, it displays the Taxis that are currently in that area, or who have just left that
area with a client. The Taxis are displayed showing their plate number and beside it in brackets it
either shows that the Taxi is available to take on a new client, or it shows an estimate of the
remaining number of minutes that that Taxi will be unavailable for as it is in the midst of bringing its
client to their destination.

When pressed, the Dispatch button should dispatch a Taxi to handle the first (i.e., top) request on
the incoming client requests list. The system should dispatch the first available Taxi that is within the
clients pickup location, if there is one available. However, the dispatching code does not work yet.

In the Simulation menu, there are two options. The Start Clients Coming option causes the system
to start a timer that begins inserting random automatic client requests to the incoming client request
list. The Stop Clients From Coming option stops the timer, putting a halt on incoming clients. The
Settings menu contains a Simulation Rate... option that allows the user to set the rate at which the
clients come into the system. You can use this to produce lots of clients quickly, or to go slowly to
watch how the system behaves. Finally, in the Admin menu, there is a Statistics option that will
bring up a Dialog showing various statistics regarding the pickups and dropoffs over time.

For this part of the assignment. Just run the code and make sure that the window appears with the
50 random requests as you created in part (2) of the assignment.

(4) Dispatching

We now need to make everything work properly. In the DispatchCenter class:

1. Complete the availableTaxisInArea(String s) method that takes an area as a parameter and

returns an ArrayList of all Taxi objects in that area that are available.

2. Complete the getBusyTaxis() method that returns a single ArrayList of all Taxi objects (in
ALL areas combined) that are unavailable.

3. Complete the sendTaxiForRequest(ClientRequest c) method that sends a Taxi to pick up
the client and returns that Taxi by following the rules below. Note that this method will be
called from the TaxiServiceDispatchingSystem GUI when pressing the Dispatch button.

1. if there are available taxis in the requested pickup area, the taxi that arrived first is

chosen for the pickup (i.e., first come first served).

2. if there are no available taxis in the pickup area, then the system must find a taxi in any
one of the other areas and send/return that one.

3. if there are no available taxis anywhere, the request for pickup is denied....no taxi is
returned (i.e., null).

4. when a taxi is sent, it should be removed from its current location in the areas HashMap
and be appended to the bottom of the pile in the areas HashMap corresponding to the
client's requested drop off location. The taxi should become unavailable. The
ClientRequest should also be removed from the incoming list.

5. the estimatedTimeToDest for the taxi should immediately be set to a value that
corresponds to the following diagram:

For example to go from West to West takes 10 minutes, West to Downtown takes 20
minutes, West to East takes 40 minutes and West to the Airport takes 60 minutes.
So, if a taxi is in the West and needs to go to another area, the time to travel is indicated
in the picture above. However, if a taxi is needed from West to the Airport, for
example, but the only taxi available is currently in the East, then the estimated time to
the destination is the combined time for the taxi to go from the East to the West to pick
up the client, then from West to Airport to drop him/her off. This is a total of 100
minutes. To accomplish this, it is best to complete the static method called
computeTravelTimeFrom(String pickup, String dropOff). In that method, it is wise
to make a 2D array of travel times where the columns represent the pickup area and the
rows represent the dropoff area.

Test your code to make sure that the Dispatch button properly dispatches taxis and that the travel
times are computed properly and that the taxis eventually return to available status after the delivery
time has elapsed.

(5) Statistics

Download the
DispatchStatsDialog class, if you
have not done so already. When
the user selects Statistics from
the Admin menu, this Dialog box
will appear showing the statistics
for each area pair combination as
a grid of non-editable TextFields.

The DispatchCenter has a 2D
stats array that keeps statistics on
each taxi dispatch for all
successful ClientRequests. That
is, it keeps track of the number of

pickup/dropoff combinations over time. A temporary 6x6 2D array has been defined already which is
used by the dialog box in the GUI. Complete the method called updateStats(String pickup, String
dropOff) which updates this 2D array of stats each time a dropoff is made. This method should be
called by the sendTaxiForRequest() method when a taxi is sent off. The code will automatically
attempt to show the most busy route in green and the least busy in red.

Test your code to ensure that it works.

__

IMPORTANT SUBMISSION INSTRUCTIONS:

Submit your ZIPPED IntelliJ project file as you did during the first tutorial for assignment 0.

 YOU WILL LOSE MARKS IF YOU ATTEMPT TO USE ANY OTHER COMPRESSION FORMATS
SUCH AS .RAR, .ARC, .TGZ, .JAR, .PKG, .PZIP.

 If your internet connection at home is down or does not work, we will not accept this as a reason for
handing in an assignment late ... so make sure to submit the assignment WELL BEFORE it is due !

 You WILL lose marks on this assignment if any of your files are missing. So, make sure that you hand
in the correct files and version of your assignment. You will also lose marks if your code is not written
neatly with proper indentation. See examples in the notes for proper style.

__

