Levels Tought:
Elementary,Middle School,High School,College,University,PHD
Teaching Since: | Jul 2017 |
Last Sign in: | 295 Weeks Ago, 3 Days Ago |
Questions Answered: | 5502 |
Tutorials Posted: | 5501 |
MBA.Graduate Psychology,PHD in HRM
Strayer,Phoniex,
Feb-1999 - Mar-2006
MBA.Graduate Psychology,PHD in HRM
Strayer,Phoniex,University of California
Feb-1999 - Mar-2006
PR Manager
LSGH LLC
Apr-2003 - Apr-2007
It's a timed test I need to double check my answers before turning it in
1.x=5.18 s=0.39 5.71 Mpa
Â
Set up the null and alternative hypotheses for the test.
Â
Find the rejection region for the test using a=0.01
Â
Compute the test statistic
Â
Give the appropriate conclusion for the test
Â
What conditions are required for the test results to be​ valid?
Â
2. 5,1,3,0,7
Â
Calculate the​ range, s2, and s
Â
Add 3 and repeat
Â
Subtract 4 and repeat
Â
Considering your answers to parts ​a, b, and ​c, what seems to be the effect on the variability of a data set by adding the same number to or subtracting the same number from each​ measurement?
Â
3.A newspaper reported on the results of an opinion poll in which adults were asked what one thing they are most likely to do when they are home sick with a cold or the flu. In the​ survey, 63​% said that they are most likely to sleep and 17% said that they would watch television. Although the sample size was not​ reported, typically opinion polls include approximately​ 1,000 randomly selected respondents.
Assuming a sample size of​ 1,000 for this​ poll, construct a 95​% confidence interval for the true percentage of all adults who would choose to sleep when they are at homesick.
Â
If the true percentage of adults who would choose to sleep when they are at home sick is 73​%, would you be​ surprised?
Â
4.The average salary for a certain profession is ​$72,000. Assume that the standard deviation of such salaries is ​$30,500.Consider a random sample of 54people in this profession and let x represent the mean salary for the sample.
Â
Â
Find the​ z-score for the value x=63,500.
Â
Find P(x>63,500)
Â
Â
Â
5.Based on a random sample of 1120​adults, the mean amount of sleep per night is 7.65 hours. Assuming the population standard deviation for amount of sleep per night is 3.5​hours, construct and interpret a 95​% confidence interval for the mean amount of sleep per night.
Â
A 95​% confidence interval is
Interpret the confidence interval.
Â
6.Cutting Speed (meters per minute)Â Â Â Useful Life Brand A (Hours)Â Â Â Useful Life Brand B (Hours)
30Â Â Â 4.9Â Â Â 5.9
30Â Â Â 3.4Â Â Â 6.2
30Â Â Â 4.5Â Â Â 5.4
40Â Â Â 5.3Â Â Â 5.0
40Â Â Â 4.2Â Â Â 4.7
40Â Â Â 2.5Â Â Â 5.0
50Â Â Â 4.4Â Â Â 4.5
50Â Â Â 2.8Â Â Â 4.0
50Â Â Â 1.0Â Â Â 3.7
60Â Â Â 4.0Â Â Â 3.8
60Â Â Â 2.0Â Â Â 3.0
60Â Â Â 1.1Â Â Â 2.4
70Â Â Â 1.1Â Â Â 1.5
70Â Â Â 0.5Â Â Â 2.0
70Â Â Â 3.0Â Â Â 1.0
Â
Use a 90% confidence interval to estimate the mean useful life of a brand A cutting tool when the cutting speed is 45 meters per minute. Repeat for brand B. Compare the widths of the two intervals and comment on the reasons for any difference.
Â
Use a 90​% prediction interval to predict the useful life of a brand A cutting tool when the cutting speed is 45 meters per minute. Repeat for brand B. Compare the widths of the two intervals to each other and to the two intervals you calculated in part a.
Comment on the reasons for any difference.
Suppose you were asked to predict the useful life of a brand A cutting tool for a cutting speed of x=100
Â
meters per minute. Because the given value of x is outside the range of the sample​ x-values, the prediction is an example of extrapolation. Predict the useful life of a brand A cutting tool that is operated at 100 meters per minute and construct a 90​% prediction interval for the actual useful life of the tool.
What additional assumption do you have to make in order to ensure the validity of an​ extrapolation?
Â
Â
7.Many primary care doctors feel overworked and burdened by potential lawsuits. In​ fact, a group of researchers reported that 63%
of all general practice physicians do not recommend medicine as a career. Let x represent the number of sampled general practice physicians who do not recommend medicine as a career.
Use the​ researchers' report to estimate p for the binomial random variable
Â
8.
School   Annual_tuition ($)   %_with_Job_Offer
1Â Â Â 39,764Â Â Â 97
2Â Â Â 39,746Â Â Â 89
3Â Â Â 38,893Â Â Â 92
4Â Â Â 38,629Â Â Â 96
5Â Â Â 38,267Â Â Â 84
6Â Â Â 37,866Â Â Â 92
7Â Â Â 37,651Â Â Â 91
8Â Â Â 37,363Â Â Â 78
9Â Â Â 36,896Â Â Â 87
10Â Â Â 36,665Â Â Â 97
Find the test statistic
Find the P value
Make the appropriate conclusion at a=0.05
Â
9.
7,8,3,5,5,8
Construct a 99​% confidence interval for the population mean
Assume that sample mean x and sample standard deviation s remain exactly the same as those you just calculated but that are based on a sample of n=25 observations. Repeat part a. What is the effect of increasing the sample size on the width of the confidence​ intervals?
Â
10.x   y
-3Â Â Â -5
-2Â Â Â -2
-1Â Â Â -1
0Â Â Â 2
1Â Â Â 4
r=
r2=
Â
x   y
-3Â Â Â 4
-2Â Â Â 2
-1Â Â Â 0
0Â Â Â -1
1Â Â Â -3
r=
r2=
Â
please and thanks
Hel-----------lo -----------Sir-----------/Ma-----------dam----------- T-----------han-----------k y-----------ou -----------for----------- us-----------ing----------- ou-----------r w-----------ebs-----------ite----------- an-----------d a-----------cqu-----------isi-----------tio-----------n o-----------f m-----------y p-----------ost-----------ed -----------sol-----------uti-----------on.----------- Pl-----------eas-----------e p-----------ing----------- me----------- on----------- ch-----------at -----------I a-----------m o-----------nli-----------ne -----------or -----------inb-----------ox -----------me -----------a m-----------ess-----------age----------- I -----------wil-----------l