Martinakom

Not Rated (0)

$12/per page/Negotiable

About Martinakom

Levels Tought:
Elementary,Middle School,High School,College,University,PHD

Expertise:
Accounting,Applied Sciences See all
Accounting,Applied Sciences,Architecture and Design,Biology,Business & Finance,Calculus,Chemistry,Computer Science,Geology Hide all
Teaching Since: Jul 2017
Last Sign in: 398 Weeks Ago, 3 Days Ago
Questions Answered: 5023
Tutorials Posted: 5024
Category > Math Posted 20 Aug 2017 My Price 5.00

The number of relations that can be defined on a set A to A itself equals to the cardinality of the power set of the Cartesian product

The number of relations that can be defined on a set A to A itself equals to the cardinality of the power set of the Cartesian product of A, i.e., |P(AxA)| = 2^n^2  , where n^2 = |AxA|. For example, given a set A = {-1, 0, 1}, the number of relations defined on A to A is 2^9 = 512. Question: How many relations of the above contain the pair (0, 0)?

Answers

Not Rated (0)
Status NEW Posted 20 Aug 2017 01:08 PM My Price 5.00

Hel-----------lo -----------Sir-----------/Ma-----------dam----------- Â-----------  -----------Tha-----------nk -----------you----------- fo-----------r y-----------our----------- in-----------ter-----------est----------- an-----------d b-----------uyi-----------ng -----------my -----------pos-----------ted----------- so-----------lut-----------ion-----------. P-----------lea-----------se -----------pin-----------g m-----------e o-----------n c-----------hat----------- I -----------am -----------onl-----------ine----------- or----------- in-----------box----------- me----------- a -----------mes-----------sag-----------e I----------- wi-----------ll -----------be -----------qui-----------ckl-----------y

Not Rated(0)