AccountingQueen

(3)

$16/per page/Negotiable

About AccountingQueen

Levels Tought:
Elementary,Middle School,High School,College,University,PHD

Expertise:
Accounting,Algebra See all
Accounting,Algebra,Applied Sciences,Architecture and Design,Art & Design,Biology,Business & Finance,Calculus,Chemistry,Communications,Computer Science,Economics,Engineering,English,Environmental science,Essay writing,Film,Foreign Languages,Geography,Geology,Geometry,Health & Medical,History,HR Management,Information Systems,Law,Literature,Management,Marketing,Math,Numerical analysis,Philosophy,Physics,Precalculus,Political Science,Psychology,Programming,Science,Social Science,Statistics Hide all
Teaching Since: Jul 2017
Last Sign in: 362 Weeks Ago, 2 Days Ago
Questions Answered: 5502
Tutorials Posted: 5501

Education

  • MBA.Graduate Psychology,PHD in HRM
    Strayer,Phoniex,
    Feb-1999 - Mar-2006

  • MBA.Graduate Psychology,PHD in HRM
    Strayer,Phoniex,University of California
    Feb-1999 - Mar-2006

Experience

  • PR Manager
    LSGH LLC
    Apr-2003 - Apr-2007

Category > Math Posted 26 Aug 2017 My Price 10.00

critical numbers

 

 

Complete the following problems:

 

 

 

 

 

1.      For the function f(x) = 4x3 - 24x2  - 60x

 

(a)  Find the critical numbers of f (if any);

(b)  Find the open intervals where the function is increasing or decreasing; and

(c)  Apply the First Derivative Test to identify all relative extrema.

 

 

 

 

 

 

 

 

 

 

2.      Determine the open intervals on which the graph of  is concave downward or concave upward. Indicate any inflection points.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.                  Find two positive numbers such that the sum of the first and four times the second is 56 and whose product is a maximum.  What is the product?

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.               Find the maximum area of a rectangle with a perimeter of 60 meters.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5.      Locate the absolute extrema of the function on the closed interval [–24,24]:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6.     Find a function f  that has derivative  and with a graph passing through the point (–4,3).

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

7.    Find the point of inflection of the graph of the function f(x) = cos(x/6) on the interval    

       .

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

8.     Find all relative extrema of the function f(x) = 2x3 – 6x + 3. Use the Second Derivative Test to determine whether each extremum is a maximum or a minimum.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

9.     Suppose the annual sales S of a new product is given by  where t is time in years. Find the exact time when the annual sales are increasing at the greatest rate. Round your answer to three decimal places.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

10.  Find the following limits:

 

  

 

 

 

 

 

 

 

 

  

 

 

 

            

 

 

 

 

 

 

          

 

 

 

 

 

 

         

 

 

 

Answers

(3)
Status NEW Posted 26 Aug 2017 07:08 AM My Price 10.00

Hel-----------lo -----------Sir-----------/Ma-----------dam----------- T-----------han-----------k y-----------ou -----------for----------- us-----------ing----------- ou-----------r w-----------ebs-----------ite----------- an-----------d a-----------cqu-----------isi-----------tio-----------n o-----------f m-----------y p-----------ost-----------ed -----------sol-----------uti-----------on.----------- Pl-----------eas-----------e p-----------ing----------- me----------- on----------- ch-----------at -----------I a-----------m o-----------nli-----------ne -----------or -----------inb-----------ox -----------me -----------a m-----------ess-----------age----------- I -----------wil-----------l

Not Rated(0)