The world’s Largest Sharp Brain Virtual Experts Marketplace Just a click Away
Levels Tought:
Elementary,High School,College,University,PHD
| Teaching Since: | May 2017 |
| Last Sign in: | 352 Weeks Ago, 5 Days Ago |
| Questions Answered: | 20103 |
| Tutorials Posted: | 20155 |
MBA, PHD
Phoniex
Jul-2007 - Jun-2012
Corportae Manager
ChevronTexaco Corporation
Feb-2009 - Nov-2016
Consider x1, . . . , xn observations from an uniform distribution on the interval (0, θ). The prior distribution for θ is Pareto(α, θo) with α known, and the corresponding posterior distribution for θ is a Pareto with scale t = max(θo, maxi=1,...,n xi) and shape α + n. (a) Set a prior such that the prior mean is 3/2 and the prior variance is 3/4. (b) Test the following Hypotheses using a Bayesian approach H0 : θ ≤ 3 H1 : θ > 3 when the following data is available x1 = 1.2 x2 = 1.8 x3 = 1.5 x4 = 2. and the prior computed in part (a) is assumed.
Â
*The density function of a Pareto(α, θo) distribution with scale θo and shape α is π(θ) = α(θo)^α/(θ^(α+1)) when θ ≥ θo and π(θ)=0 when θ < 0, where θo > 0 and α > 0. When α > 2, the mean is α θo/ (α−1) and the variance is α(θo)^2/((α−1)^(2) (α−2)) .
Hel-----------lo -----------Sir-----------/Ma-----------dam----------- T-----------han-----------k Y-----------ou -----------for----------- us-----------ing----------- ou-----------r w-----------ebs-----------ite----------- an-----------d a-----------cqu-----------isi-----------tio-----------n o-----------f m-----------y p-----------ost-----------ed -----------sol-----------uti-----------on.----------- Pl-----------eas-----------e p-----------ing----------- me----------- on----------- ch-----------at -----------I a-----------m o-----------nli-----------ne -----------or -----------inb-----------ox -----------me -----------a m-----------ess-----------age----------- I -----------wil-----------l