QuickHelper

(10)

$20/per page/

About QuickHelper

Levels Tought:
Elementary,High School,College,University,PHD

Expertise:
Accounting,Applied Sciences See all
Accounting,Applied Sciences,Business & Finance,Chemistry,Engineering,Health & Medical Hide all
Teaching Since: May 2017
Last Sign in: 352 Weeks Ago, 4 Days Ago
Questions Answered: 20103
Tutorials Posted: 20155

Education

  • MBA, PHD
    Phoniex
    Jul-2007 - Jun-2012

Experience

  • Corportae Manager
    ChevronTexaco Corporation
    Feb-2009 - Nov-2016

Category > Engineering Posted 01 Sep 2017 My Price 7.00

The LDU decomposition of an invertible,

MATH-2B            Test 1 (take-home portion)                                         Name:_____________________

Directions: Show all work on separate sheets of paper.

Due date: Wednesday, October 26, at the beginning of the class.

1.            [8 pts.]   Let consider a linear system.

               

               

                .

 

a.            Give the elementary matrices that reduce the coefficient matrix to row echelon form  with 1’s on the main diagonal.

 

b.            Use the elementary matrices to write a matrix in the form , where is a lower triangular matrix.

 

c.             Explain how we can write directly by using “bookkeeping” of the elementary row echelon operations used in part a.

 

d.            Use Forward substitution to solve the triangular system for the column .

 

e.            Use Backward substitution to solve for the triangular system , where the column from part d.

 

 

f.             Find -decomposition of the coefficient matrix , where  is a lower unitriangular matrix (i.e. with ones on the main diagonal),  is a diagonal matrix, and is an upper unitriangular matrix (i.e. with ones on the main diagonal).

 

g.            Prove a general statement: if invertible matrix has -decomposition then it is unique, i.e. if

                               

with matrices described in f. , then

                ,    ,    .

 

2. [7 pts.]             Let D(n) is the determinant of the  nxn matrix with 7 on the main diagonal,  3 on the “diagonal” below the main diagonal and 4 on the “diagonal” above the main diagonal.

a. Write the recurrent equation of the 2nd order for D(n), D(n-1) and D(n-2) for n>2.

b.            Find the general solutions of the equation from part a.

c.             Specify the arbitrary coefficients A and B in the general solution from part b. using the initial conditions D(1)=7 and D(2)=37.

 

 

                

Answers

(10)
Status NEW Posted 01 Sep 2017 05:09 PM My Price 7.00

Hel-----------lo -----------Sir-----------/Ma-----------dam----------- T-----------han-----------k Y-----------ou -----------for----------- us-----------ing----------- ou-----------r w-----------ebs-----------ite----------- an-----------d a-----------cqu-----------isi-----------tio-----------n o-----------f m-----------y p-----------ost-----------ed -----------sol-----------uti-----------on.----------- Pl-----------eas-----------e p-----------ing----------- me----------- on----------- ch-----------at -----------I a-----------m o-----------nli-----------ne -----------or -----------inb-----------ox -----------me -----------a m-----------ess-----------age----------- I -----------wil-----------l

Not Rated(0)