Dr Nick


$14/per page/Negotiable

About Dr Nick

Levels Tought:
Elementary,Middle School,High School,College,University,PHD

Art & Design,Computer Science See all
Art & Design,Computer Science,Engineering,Information Systems,Programming Hide all
Teaching Since: May 2017
Last Sign in: 48 Weeks Ago, 1 Day Ago
Questions Answered: 19234
Tutorials Posted: 19235


  • MBA (IT), PHD
    Kaplan University
    Apr-2009 - Mar-2014


  • Professor
    University of Santo Tomas
    Aug-2006 - Present

Category > Geometry Posted 30 Oct 2017 My Price 12.00

A regular polygon has interior angles that are 5 times larger than each of its exterior angles. How many sides does the polygon have?



We need to be able to calculate this, without having to consider the size of the exterior and interior angles of all the different polygons.

Let the size of an exterior angle be x°

The size of the interior angle is therefore 5x°

An exterior and interior angle are supplementary angles.





This is size of each exterior angle (ext



The sum of the exterior angles is 360°


Number of sides (or angles) = 360ext

36030=12 sides


Status NEW Posted 30 Oct 2017 01:10 PM My Price 12.00

Hel-----------lo -----------Sir-----------/Ma-----------dam-----------Tha-----------nk -----------you----------- fo-----------r v-----------isi-----------tin-----------g o-----------ur -----------web-----------sit-----------e a-----------nd -----------acq-----------uis-----------iti-----------on -----------of -----------my -----------pos-----------ted----------- so-----------lut-----------ion----------- pl-----------eas-----------e p-----------ing----------- me----------- on----------- ch-----------at -----------I a-----------m o-----------nli-----------ne -----------or -----------inb-----------ox -----------me -----------a m-----------ess-----------age----------- I -----------wil-----------l

Not Rated(0)