The world’s Largest Sharp Brain Virtual Experts Marketplace Just a click Away
Levels Tought:
Elementary,Middle School,High School,College,University,PHD
| Teaching Since: | May 2017 |
| Last Sign in: | 339 Weeks Ago, 5 Days Ago |
| Questions Answered: | 19234 |
| Tutorials Posted: | 19224 |
MBA (IT), PHD
Kaplan University
Apr-2009 - Mar-2014
Professor
University of Santo Tomas
Aug-2006 - Present
The basic Gaussian function is simply:
##y=e^(-x^2)##
where the normal distribution is a specific parameterization:
##f(x | mu, sigma^2) = 1/sqrt(2 pi sigma^2) e^(-(x-mu)^2 /(2 sigma^2))##
The basic Gaussian function is simply:
##y=e^(-x^2)##
We can parameterize is with some additional constants:
##y = A e^(-b(x-c)^2)##
If we want to use it for statistical purposes, we would want to make it into where:
##c## becomes the mean i.e. ##c implies bar x## ##b## becomes the reciprocal of half of the variance, i.e. ##b implies 1/(2sigma^2)## and we choose ##A## such that the integral of the function over all ##x## is ##1##, i.e. ##A implies 1/sqrt(2 pi sigma^2)##
The normal distribution function is then given by
##f(x | mu, sigma^2) = 1/sqrt(2 pi sigma^2) e^(-(x-mu)^2 /(2 sigma^2))##
Hel-----------lo -----------Sir-----------/Ma-----------dam-----------Tha-----------nk -----------you----------- fo-----------r v-----------isi-----------tin-----------g o-----------ur -----------web-----------sit-----------e a-----------nd -----------acq-----------uis-----------iti-----------on -----------of -----------my -----------pos-----------ted----------- so-----------lut-----------ion----------- pl-----------eas-----------e p-----------ing----------- me----------- on----------- ch-----------at -----------I a-----------m o-----------nli-----------ne -----------or -----------inb-----------ox -----------me -----------a m-----------ess-----------age----------- I -----------wil-----------l