ComputerScienceExpert

(11)

$18/per page/

About ComputerScienceExpert

Levels Tought:
Elementary,Middle School,High School,College,University,PHD

Expertise:
Applied Sciences,Calculus See all
Applied Sciences,Calculus,Chemistry,Computer Science,Environmental science,Information Systems,Science Hide all
Teaching Since: Apr 2017
Last Sign in: 103 Weeks Ago, 3 Days Ago
Questions Answered: 4870
Tutorials Posted: 4863

Education

  • MBA IT, Mater in Science and Technology
    Devry
    Jul-1996 - Jul-2000

Experience

  • Professor
    Devry University
    Mar-2010 - Oct-2016

Category > Programming Posted 22 May 2017 My Price 8.00

INSY 5339HW #5: Predict Treatment

INSY 5339HW #5: Predict Treatment OutcomeUse the same genes-leukemia.csv dataset used in assignment #2.As a predictor use field TREATMENT_RESPONSE, which has values Success, Failureor "?" (missing)Step 1. Examine the records where TREATMENT_RESPONSE is non-missing.Q1: How many such records are there?Q2: Can you describe these records using other sample fields (e.g. Year from XXXX toYYYY , or Gender = X, etc)Q3: Why is it not correct to build predictive models for TREATMENT_RESPONSEusing records where it is missing?Step 2. Select only the records with non-missing TREATMENT_RESPONSE. KeepSNUM (sample number) but remove sample fields that are all the same or missing (i.e.,they have same value for 10 or more samples). Call the reduced dataset genesreduced.csvQ4: How many sample fields should you keep?Step 3. Build a J48 Model using leave-one-out cross validation (which is same as n-foldcross-validation where n is the number of instances in the data set).Q5: What tree do you get? What is the incorrectly classified error rate?Q6: What are the important variables and their relative importance, according to J48?Q7: Remove the top predictor -- and re-run the J48 using leave-one-out cross validation --what do you get?

Answers

(11)
Status NEW Posted 22 May 2017 01:05 AM My Price 8.00

-----------

Attachments

file 1495417180-Solutions file 2.docx preview (51 words )
H-----------ell-----------o S-----------ir/-----------Mad-----------am ----------- Th-----------ank----------- yo-----------u f-----------or -----------you-----------r i-----------nte-----------res-----------t a-----------nd -----------buy-----------ing----------- my----------- po-----------ste-----------d s-----------olu-----------tio-----------n. -----------Ple-----------ase----------- pi-----------ng -----------me -----------on -----------cha-----------t I----------- am----------- on-----------lin-----------e o-----------r i-----------nbo-----------x m-----------e a----------- me-----------ssa-----------ge -----------I w-----------ill----------- be----------- qu-----------ick-----------ly -----------onl-----------ine----------- an-----------d g-----------ive----------- yo-----------u e-----------xac-----------t f-----------ile----------- an-----------d t-----------he -----------sam-----------e f-----------ile----------- is----------- al-----------so -----------sen-----------t t-----------o y-----------our----------- em-----------ail----------- th-----------at -----------is -----------reg-----------ist-----------ere-----------d o-----------n -----------THI-----------S W-----------EBS-----------ITE-----------. ----------- Th-----------ank----------- yo-----------u -----------
Not Rated(0)