ComputerScienceExpert

(11)

$18/per page/

About ComputerScienceExpert

Levels Tought:
Elementary,Middle School,High School,College,University,PHD

Expertise:
Applied Sciences,Calculus See all
Applied Sciences,Calculus,Chemistry,Computer Science,Environmental science,Information Systems,Science Hide all
Teaching Since: Apr 2017
Last Sign in: 103 Weeks Ago, 3 Days Ago
Questions Answered: 4870
Tutorials Posted: 4863

Education

  • MBA IT, Mater in Science and Technology
    Devry
    Jul-1996 - Jul-2000

Experience

  • Professor
    Devry University
    Mar-2010 - Oct-2016

Category > Programming Posted 24 May 2017 My Price 8.00

BMES 372 HW-III: Solving ODEs Numerically

BMES 372 HW-III: Solving ODEs Numerically

 

Use Matlab for all questions, show code listings, include graphs, run-times and comment what you did (see also Matlab codes for ODE solvers in the weblink file posted in BBLearn)

Important: Do not use Matlab ODE functions (like ODE 45). Instead, implement the numerical methods and calculate all slopes (e.g. k1…. k4) and derivatives explicitly.

______________________________________________________________

 

Consider the first order differential equations:

 

dY1/dt = Y2    and  dY2/dt = (1 - Y12)Y2 - Y1

 

                       with initial conditions:  Y1 (0) = 2   and   Y2 (0) = 0

 

1a) Implement and use Euler’s method with a step size of h = 0.1 to find approximate values of the solution for Y1  for in the interval between t = 0.0 and . Produce a graph showing the numerical solution.

 

1b) Use your Euler implementation with a step size of h = 0.001. Graph the function (can be included in the first figure).

 

2a) Implement and use 4th order Runge-Kutta method with a step size of h = 0.1 to find approximate values between .0 and . Graph the solution (can be included in the first figure).

 

2b) Use 4th order Runge-Kutta method with a step size of .001. Graph the solution (can be included in the first figure).

 

4) Determine the absolute and relative errors (see Chapter 6.4) by comparing the amount of the state variable Y1 at the last timepoint () of the implementations 1a, 1b and 2a with the implementation 2b.  Comment with a summary statement (3-4 sentences) on the accuracy of the methods investigated, their dependency on different step sizes.

Answers

(11)
Status NEW Posted 24 May 2017 03:05 AM My Price 8.00

-----------

Attachments

file 1495596631-Solutions file 2.docx preview (51 words )
H-----------ell-----------o S-----------ir/-----------Mad-----------am ----------- Th-----------ank----------- yo-----------u f-----------or -----------you-----------r i-----------nte-----------res-----------t a-----------nd -----------buy-----------ing----------- my----------- po-----------ste-----------d s-----------olu-----------tio-----------n. -----------Ple-----------ase----------- pi-----------ng -----------me -----------on -----------cha-----------t I----------- am----------- on-----------lin-----------e o-----------r i-----------nbo-----------x m-----------e a----------- me-----------ssa-----------ge -----------I w-----------ill----------- be----------- qu-----------ick-----------ly -----------onl-----------ine----------- an-----------d g-----------ive----------- yo-----------u e-----------xac-----------t f-----------ile----------- an-----------d t-----------he -----------sam-----------e f-----------ile----------- is----------- al-----------so -----------sen-----------t t-----------o y-----------our----------- em-----------ail----------- th-----------at -----------is -----------reg-----------ist-----------ere-----------d o-----------n -----------THI-----------S W-----------EBS-----------ITE-----------. ----------- Th-----------ank----------- yo-----------u -----------
Not Rated(0)