ComputerScienceExpert

(11)

$18/per page/

About ComputerScienceExpert

Levels Tought:
Elementary,Middle School,High School,College,University,PHD

Expertise:
Applied Sciences,Calculus See all
Applied Sciences,Calculus,Chemistry,Computer Science,Environmental science,Information Systems,Science Hide all
Teaching Since: Apr 2017
Last Sign in: 103 Weeks Ago, 2 Days Ago
Questions Answered: 4870
Tutorials Posted: 4863

Education

  • MBA IT, Mater in Science and Technology
    Devry
    Jul-1996 - Jul-2000

Experience

  • Professor
    Devry University
    Mar-2010 - Oct-2016

Category > Math Posted 19 Apr 2017 My Price 8.00

Sn is a regular n-gon inscribed in a circle of radius 1

Sn is a regular n-gon inscribed in a circle of radius 1. (A regular n-gon is a polygon with n sides and where each of the sides has the same length and the angles around the n-gon are all equal. For example, a square is a regular 4-gon, and an equilateral triangle is a regular 3-gon.) The goal of this problem is to compute the perimeter pn of the regular n-gon Sn and then try to compute lim n→∞ pn. 1. (1 point) Carefully draw a diagram showing a regular 6-gon (or hexagon) inscribed in a circle of radius 1. Use geometric reasoning to compute the perimeter p6 of this hexagon.

2. (2 points) Draw a radius from the center of the circle to each vertex of Sn. This divides Sn into n congruent isosceles triangles. What is the measure of the angle θ (in radians) at the center of the circle for each of these triangles?

3. (3 points) Carefully explain why the length of the base of each of these isosceles triangles is equal to 2sin(π n). (From the center of the circle, draw a perpendicular line to the base of the isosceles triangle, and then express the length of the base in terms of an appropriate trigonometric function and angle.)

4. (2 points) Find a formula for the perimeter pn using the answer in (3). Verify that for n = 6, your formula agrees with your answer in (1).

5. (2 points) Try to find lim n→∞

pn. You could use your calculator to evaluate pn for larger and larger values of n. Can you guess the correct limit by using geometric reasoning and by considering how the picture changes as n becomes arbitrarily large? Is your guess consistent with the numerical data given by your calculator?

Answers

(11)
Status NEW Posted 19 Apr 2017 08:04 AM My Price 8.00

-----------

Attachments

file 1492589632-Solutions file 2.docx preview (51 words )
H-----------ell-----------o S-----------ir/-----------Mad-----------am ----------- Th-----------ank----------- yo-----------u f-----------or -----------you-----------r i-----------nte-----------res-----------t a-----------nd -----------buy-----------ing----------- my----------- po-----------ste-----------d s-----------olu-----------tio-----------n. -----------Ple-----------ase----------- pi-----------ng -----------me -----------on -----------cha-----------t I----------- am----------- on-----------lin-----------e o-----------r i-----------nbo-----------x m-----------e a----------- me-----------ssa-----------ge -----------I w-----------ill----------- be----------- qu-----------ick-----------ly -----------onl-----------ine----------- an-----------d g-----------ive----------- yo-----------u e-----------xac-----------t f-----------ile----------- an-----------d t-----------he -----------sam-----------e f-----------ile----------- is----------- al-----------so -----------sen-----------t t-----------o y-----------our----------- em-----------ail----------- th-----------at -----------is -----------reg-----------ist-----------ere-----------d o-----------n -----------THI-----------S W-----------EBS-----------ITE-----------. ----------- Th-----------ank----------- yo-----------u -----------
Not Rated(0)