The world’s Largest Sharp Brain Virtual Experts Marketplace Just a click Away
Levels Tought:
Elementary,High School,College,University,PHD
| Teaching Since: | May 2017 |
| Last Sign in: | 352 Weeks Ago, 4 Days Ago |
| Questions Answered: | 20103 |
| Tutorials Posted: | 20155 |
MBA, PHD
Phoniex
Jul-2007 - Jun-2012
Corportae Manager
ChevronTexaco Corporation
Feb-2009 - Nov-2016
00001.
Select the correct description of right-hand and left-hand behavior of the graph of the polynomial function.
00002.
Æ’(x) = 4x2Â - 5x + 4
00003.
| Â | Â |
Falls to the left, rises to the right. |
| Â | Â |
Falls to the left, falls to the right. |
| Â | Â |
Rises to the left, rises to the right. |
| Â | Â |
Rises to the left, falls to the right. |
| Â | Â |
Falls to the left. |
00004.
5 points
00001.
Describe the right-hand and the left-hand behavior of the graph of
00002.
t(x) = 4x5Â - 7x3Â - 13
00003.
| Â | Â |
Because the degree is odd and the leading coefficient is positive, the graph falls to the left and rises to the right. |
| Â | Â |
Because the degree is odd and the leading coefficient is positive, the graph rises to the left and rises to the right. |
| Â | Â |
Because the degree is odd and the leading coefficient is positive, the graph falls to the left and falls to the right. |
| Â | Â |
Because the degree is odd and the leading coefficient is positive, the graph rises to the left and falls to the right. |
| Â | Â |
Because the degree is even and the leading coefficient is positive, the graph rises to the left and rises to the right. |
00004.
5 points
00001.
Select the correct description of right-hand and left-hand behavior of the graph of the polynomial function.
00002.
Æ’(x) = 3 - 5x + 3x2Â - 5x3
00003.
| Â | Â |
Falls to the left, rises to the right. |
| Â | Â |
Falls to the left, falls to the right. |
| Â | Â |
Rises to the left, rises to the right. |
| Â | Â |
Rises to the left, falls to the right. |
| Â | Â |
Falls to the left. |
00004.
5 points
00001.
Select from the following which is the polynomial function that has the given zeroes.
00002.
2,-6
00003.
| Â | Â |
f(x) = x2Â - 4x + 12 |
| Â | Â |
f(x) = x2Â + 4x + 12 |
| Â | Â |
f(x) = -x2Â -4x - 12 |
| Â | Â |
f(x) = -x2Â + 4x - 12 |
| Â | Â |
f(x) = x2Â + 4x - 12 |
00004.
5 points
00001.
Select from the following which is the polynomial function that has the given zeroes.
00002.
0,-2,-4
00003.
| Â | Â |
f(x) = -x3Â + 6x2Â + 8x |
| Â | Â |
f(x) = x3Â - 6x2Â + 8x |
| Â | Â |
f(x) = x3Â + 6x2Â + 8x |
| Â | Â |
f(x) = x3Â - 6x2Â - 8x |
| Â | Â |
f(x) = x3Â + 6x2Â - 8x |
00004.
5 points
00001.
Sketch the graph of the function by finding the zeroes of the polynomial.
00002.
f(x) = 2x3Â - 10x2Â + 12x
00003.
| Â | Â |
0,2,3 |
| Â | Â |
0,2,-3 |
| Â | Â |
0,-2,3 |
| Â | Â |
0,2,3 |
| Â | Â |
0,-2,-3 |
00004.
5 points
00001.
Select the graph of the function and determine the zeroes of the polynomial.
00002.
f(x) = x2(x-6)
00003.
| Â | Â |
0,6,-6 |
| Â | Â |
0,6 |
| Â | Â |
0,-6 |
| Â | Â |
0,6 |
| Â | Â |
0,-6 |
00004.
5 points
00001.
Use the Remainder Theorem and Synthetic Division to find the function value.
00002.
g(x) = 3x6Â + 3x4Â - 3x2Â + 6, g(0)
00003.
| Â | Â |
6 |
| Â | Â |
3 |
| Â | Â |
-3 |
| Â | Â |
8 |
| Â | Â |
7 |
00004.
5 points
00001.
Use the Remainder Theorem and Synthetic Division to find the function value.
00002.
f(x) = 3x3Â - 7x + 3, f(5)
00003.
| Â | Â |
-343 |
| Â | Â |
343 |
| Â | Â |
345 |
| Â | Â |
340 |
| Â | Â |
344 |
00004.
5 points
00001.
Use the Remainder Theorem and Synthetic Division to find the function value.
00002.
h(x) = x3Â - 4x2Â - 9x + 7, h(4)
00003.
| Â | Â |
-28 |
| Â | Â |
-27 |
| Â | Â |
-31 |
| Â | Â |
-25 |
| Â | Â |
-29 |
00004.
5 points
00001.
Use synthetic division to divide:
00002.
(3x3 - 24x2 + 45x - 54) ÷ (x-6)
00003.
| Â | Â |
6x2 - 3x - 9, x ≠6 |
| Â | Â |
6x2 -3x - 9, x ≠6 |
| Â | Â |
3x2 - 6x + 9, x ≠6 |
| Â | Â |
3x2 - 6x - 9, x ≠6 |
| Â | Â |
3x2 + 6x + 9, x ≠6 |
00004.
5 points
00001.
Use synthetic division to divide:
00002.
(x3 - 27x + 54) ÷ (x - 3)
00003.
| Â | Â |
x2 + 3x - 18, x ≠3 |
| Â | Â |
x2 - 3x - 27, x ≠3 |
| Â | Â |
x2 + 9x + 18, x ≠3 |
| Â | Â |
x2 + 9x - 6, x ≠3 |
| Â | Â |
x2 + 6x + 9, x ≠3 |
00004.
5 points
00001.
Use synthetic division to divide:
00002.
(4x3 - 9x + 16x2 - 36) ÷ (x + 4)
00003.
| Â | Â |
4x2 - 9, x ≠-4 |
| Â | Â |
4x2 + 9, x ≠-4 |
| Â | Â |
-4x2 - 9, x ≠-4 |
| Â | Â |
4x3 - 9, x ≠-4 |
| Â | Â |
4x3 + 9, x ≠-4 |
00004.
5 points
00001.
Use synthetic division to divide:
00002.
00003.
| Â | Â |
5x2 + 45x + 25, x ≠ 1/5 |
| Â | Â |
16x2 + 80x + 20, x ≠ 1/5 |
| Â | Â |
100x2 + 45x + 400, x ≠ 1/5 |
| Â | Â |
20x2 + 180x + 400, x ≠ 1/5 |
| Â | Â |
4x2 + 21x + 20, x ≠ 1/5 |
00004.
5 points
00001.
Find all of the zeroes of the function.
00002.
(x - 3)(x + 9)3
00003.
| Â | Â |
-3,9 |
| Â | Â |
3,9 |
| Â | Â |
-3,-9 |
| Â | Â |
-3,3,9 |
| Â | Â |
3,-9 |
00004.
5 points
00001.
Find all the rational zeroes of the function.
00002.
x3Â - 12x2Â + 41x - 42
00003.
| Â | Â |
-2, -3, -7 |
| Â | Â |
2, 3, 7 |
| Â | Â |
2, -3, 7 |
| Â | Â |
-2, 3, 7 |
| Â | Â |
-2, 3, -7 |
00004.
5 points
00001.
Determine all real zeroes of f.
00002.
f(x) = x3Â + x2Â - 25x - 25
00003.
| Â | Â |
-5,1,0 |
| Â | Â |
5,0,-5 |
| Â | Â |
-5,-1,5 |
| Â | Â |
-5,0,0 |
| Â | Â |
5,-1,0 |
00004.
5 points
00001.
The height, h(x), of a punted rugby ball is given by where x is the horizontal distance in feet from the point where the ball is punted. How far, horizontally, is the ball from the kicker when it is at its highest point?
00002.
| Â | Â |
28 feet |
| Â | Â |
13 feet |
| Â | Â |
18 feet |
| Â | Â |
23 feet |
| Â | Â |
16 feet |
00003.
5 points
00001.
The profit P (in hundreds of dollars) that a company makes depends on the amount x (in hundreds of dollars) the company spends on advertising according to the model.
00002.
P(x) = 230 + 40x - 0.5x2
00003.
What expenditure for advertising will yield a maximum profit?
00004.
| Â | Â |
40 |
| Â | Â |
0.5 |
| Â | Â |
230 |
| Â | Â |
20 |
| Â | Â |
115 |
00005.
5 points
00001.
The total revenue R earned per day (in dollars) from a pet-sitting service is given by
00002.
R(p) = -10p2Â + 130p
00003.
where p is the price charged per pet (in dollars).
00004.
Find the price that will yield a maximum revenue.
00005.
| Â | Â |
$7.5 |
| Â | Â |
$6.5 |
| Â | Â |
$8.5 |
| Â | Â |
$9.5 |
| Â | Â |
$10.5 |
00006.
Hel-----------lo -----------Sir-----------/Ma-----------dam----------- T-----------han-----------k Y-----------ou -----------for----------- us-----------ing----------- ou-----------r w-----------ebs-----------ite----------- an-----------d a-----------cqu-----------isi-----------tio-----------n o-----------f m-----------y p-----------ost-----------ed -----------sol-----------uti-----------on.----------- Pl-----------eas-----------e p-----------ing----------- me----------- on----------- ch-----------at -----------I a-----------m o-----------nli-----------ne -----------or -----------inb-----------ox -----------me -----------a m-----------ess-----------age----------- I -----------wil-----------l