QuickHelper

(10)

$20/per page/

About QuickHelper

Levels Tought:
Elementary,High School,College,University,PHD

Expertise:
Accounting,Applied Sciences See all
Accounting,Applied Sciences,Business & Finance,Chemistry,Engineering,Health & Medical Hide all
Teaching Since: May 2017
Last Sign in: 352 Weeks Ago, 5 Days Ago
Questions Answered: 20103
Tutorials Posted: 20155

Education

  • MBA, PHD
    Phoniex
    Jul-2007 - Jun-2012

Experience

  • Corportae Manager
    ChevronTexaco Corporation
    Feb-2009 - Nov-2016

Category > Engineering Posted 22 Jul 2017 My Price 6.00

set of zeroes.

answers must be typed.

Math 124C-4

Project B

 

Set of zeros is -3, -2, 1, 4

 

Q1.       a. List your four zeroes.

            b. Write the expression for a 4th degree polynomial with these zeroes

                 in Root Form as f(x). This is the root form of your parent function

            c. Write the expression for a 4th degree polynomial with these zeroes

                 in Function Form as f(x). This is the polynomial form of your parent

                 function

 

Q2.       a. Give the coordinates for the turning points of f(x).

            b. Identify each turning point as a local or absolute  maximum or minimum.

 

Q3.       a. Modify f(x) to compress it vertically so it fits in the Standard view

                 window on your calculator, but with the same four zeroes. This is g(x).

            b. Write g(x) in Root Form.

            c. Write g(x) in Function Form.

 

Q4.       Write the coordinates of the turning points of g(x).

 

Q5.       a. Find a new function h(x) exactly like g(x), but shifted to the right by 2.

            b. Write h(x) in Function Form.

 

Q6.       a. Modify one root of g(x) so the two rightmost zeroes are twice as far apart

                 as the two leftmost zeroes. This is k(x).

            b. Identify the regions of the domain of k(x) that are positive and negative.

 

Q7.       a. Modify k(x) so it fits in the Standard view window, but with the same

                 zeroes. This is m(x).

             b. Write m(x) in Root Form.

 

Q8.       a. Modify g(x) so that one of the zeroes (your choice) has multiplicity 2, but

                 with only four roots (that is, don't add a root, just change one root).

                 This is n(x).

            b. Give the coordinates of the turning points of n(x).

 

Q9.       a. Move k(x) vertically so it has only two zeroes. This is p(x).

            b. Write  p(x) in Function Form.

 

Q10.    Choose one of the zeroes of f(x), and any number that is not a zero of f(x).

              Using Synthetic Division, demonstrate how you can show which is a zero.

 

 

 

Answers

(10)
Status NEW Posted 22 Jul 2017 07:07 PM My Price 6.00

Hel-----------lo -----------Sir-----------/Ma-----------dam----------- T-----------han-----------k Y-----------ou -----------for----------- us-----------ing----------- ou-----------r w-----------ebs-----------ite----------- an-----------d a-----------cqu-----------isi-----------tio-----------n o-----------f m-----------y p-----------ost-----------ed -----------sol-----------uti-----------on.----------- Pl-----------eas-----------e p-----------ing----------- me----------- on----------- ch-----------at -----------I a-----------m o-----------nli-----------ne -----------or -----------inb-----------ox -----------me -----------a m-----------ess-----------age----------- I -----------wil-----------l

Not Rated(0)