The world’s Largest Sharp Brain Virtual Experts Marketplace Just a click Away
Levels Tought:
Elementary,High School,College,University,PHD
| Teaching Since: | May 2017 |
| Last Sign in: | 352 Weeks Ago, 5 Days Ago |
| Questions Answered: | 20103 |
| Tutorials Posted: | 20155 |
MBA, PHD
Phoniex
Jul-2007 - Jun-2012
Corportae Manager
ChevronTexaco Corporation
Feb-2009 - Nov-2016
answers must be typed.
Math 124C-4
Project B
Â
Set of zeros is -3, -2, 1, 4
Â
Q1.     a. List your four zeroes.
           b. Write the expression for a 4th degree polynomial with these zeroes
               in Root Form as f(x). This is the root form of your parent function
           c. Write the expression for a 4th degree polynomial with these zeroes
               in Function Form as f(x). This is the polynomial form of your parent
               function
Â
Q2. Â Â Â Â Â a. Give the coordinates for the turning points of f(x).
           b. Identify each turning point as a local or absolute maximum or minimum.
Â
Q3. Â Â Â Â Â a. Modify f(x) to compress it vertically so it fits in the Standard view
               window on your calculator, but with the same four zeroes. This is g(x).
           b. Write g(x) in Root Form.
           c. Write g(x) in Function Form.
Â
Q4. Â Â Â Â Â Write the coordinates of the turning points of g(x).
Â
Q5.      a. Find a new function h(x) exactly like g(x), but shifted to the right by 2.
           b. Write h(x) in Function Form.
Â
Q6.      a. Modify one root of g(x) so the two rightmost zeroes are twice as far apart
               as the two leftmost zeroes. This is k(x).
           b. Identify the regions of the domain of k(x) that are positive and negative.
Â
Q7. Â Â Â Â Â a. Modify k(x) so it fits in the Standard view window, but with the same
               zeroes. This is m(x).
            b. Write m(x) in Root Form.
Â
Q8.      a. Modify g(x) so that one of the zeroes (your choice) has multiplicity 2, but
               with only four roots (that is, don't add a root, just change one root).
               This is n(x).
           b. Give the coordinates of the turning points of n(x).
Â
Q9.      a. Move k(x) vertically so it has only two zeroes. This is p(x).
           b. Write p(x) in Function Form.
Â
Q10. Â Â Choose one of the zeroes of f(x), and any number that is not a zero of f(x).
            Using Synthetic Division, demonstrate how you can show which is a zero.
Â
Â
Â
Hel-----------lo -----------Sir-----------/Ma-----------dam----------- T-----------han-----------k Y-----------ou -----------for----------- us-----------ing----------- ou-----------r w-----------ebs-----------ite----------- an-----------d a-----------cqu-----------isi-----------tio-----------n o-----------f m-----------y p-----------ost-----------ed -----------sol-----------uti-----------on.----------- Pl-----------eas-----------e p-----------ing----------- me----------- on----------- ch-----------at -----------I a-----------m o-----------nli-----------ne -----------or -----------inb-----------ox -----------me -----------a m-----------ess-----------age----------- I -----------wil-----------l