ComputerScienceExpert

(11)

$18/per page/

About ComputerScienceExpert

Levels Tought:
Elementary,Middle School,High School,College,University,PHD

Expertise:
Applied Sciences,Calculus See all
Applied Sciences,Calculus,Chemistry,Computer Science,Environmental science,Information Systems,Science Hide all
Teaching Since: Apr 2017
Last Sign in: 103 Weeks Ago, 3 Days Ago
Questions Answered: 4870
Tutorials Posted: 4863

Education

  • MBA IT, Mater in Science and Technology
    Devry
    Jul-1996 - Jul-2000

Experience

  • Professor
    Devry University
    Mar-2010 - Oct-2016

Category > Programming Posted 06 May 2017 My Price 9.00

IT446DATA MINING & DATA WAREHOUSING26

Please help me solve these questions in the description

 

 

Compare the advantages and disadvantages of eager classification (e.g., decision tree, Bayesian, neural network) versus lazy classification (e.g., k-nearest neighbor, case-based reasoning).  ( 1 Mark)

 

Q4. The following decision tree has been created to predict what someone can do. co

 

IT446DATA MINING & DATA WAREHOUSING26.11.2016Assignment #3Due Date: Saturday 3rdDec 11:59 PMTotal Marks: 4Q1.Given a decision tree, you have the option of (a)convertingthe decision tree to rules andthen pruning the resulting rules, or (b)pruningthe decision tree and then converting the prunedtreetorules.Whatadvantagedoes(a)haveover(b)?(0.75 Mark)Q2.See the following Figure and compute the true positive rate .TPR/ , false positive rate .FPR/,Precision and Accuracy.(2 Marks)ï‚·There are two possible predicted classes: "yes" and "no". If we predict the presence of adisease, for example, "yes" would mean they have the disease, and "no" would mean theydon't have the disease.ï‚·The classifier made a total of 165 predictions (e.g., 165 patients were being tested for thepresence of that disease).ï‚·Out of those 165 cases, the classifier predicted "yes" 110 times, and "no" 55 times.ï‚·In reality, 105 patients in the sample have the disease, and 60 patients do not.Q3.Compare the advantages and disadvantages ofeagerclassification (e.g., decision tree,Bayesian, neural network) versuslazyclassification (e.g.,k-nearest neighbor, case-basedreasoning).( 1 Mark)

Attachments:

Answers

(11)
Status NEW Posted 06 May 2017 05:05 AM My Price 9.00

-----------

Attachments

file 1494049805-Solutions file 2.docx preview (51 words )
H-----------ell-----------o S-----------ir/-----------Mad-----------am ----------- Th-----------ank----------- yo-----------u f-----------or -----------you-----------r i-----------nte-----------res-----------t a-----------nd -----------buy-----------ing----------- my----------- po-----------ste-----------d s-----------olu-----------tio-----------n. -----------Ple-----------ase----------- pi-----------ng -----------me -----------on -----------cha-----------t I----------- am----------- on-----------lin-----------e o-----------r i-----------nbo-----------x m-----------e a----------- me-----------ssa-----------ge -----------I w-----------ill----------- be----------- qu-----------ick-----------ly -----------onl-----------ine----------- an-----------d g-----------ive----------- yo-----------u e-----------xac-----------t f-----------ile----------- an-----------d t-----------he -----------sam-----------e f-----------ile----------- is----------- al-----------so -----------sen-----------t t-----------o y-----------our----------- em-----------ail----------- th-----------at -----------is -----------reg-----------ist-----------ere-----------d o-----------n -----------THI-----------S W-----------EBS-----------ITE-----------. ----------- Th-----------ank----------- yo-----------u -----------
Not Rated(0)