Alpha Geek

(8)

$10/per page/Negotiable

About Alpha Geek

Levels Tought:
University

Expertise:
Accounting,Algebra See all
Accounting,Algebra,Architecture and Design,Art & Design,Biology,Business & Finance,Calculus,Chemistry,Communications,Computer Science,Environmental science,Essay writing,Programming,Social Science,Statistics Hide all
Teaching Since: Apr 2017
Last Sign in: 438 Weeks Ago, 2 Days Ago
Questions Answered: 9562
Tutorials Posted: 9559

Education

  • bachelor in business administration
    Polytechnic State University Sanluis
    Jan-2006 - Nov-2010

  • CPA
    Polytechnic State University
    Jan-2012 - Nov-2016

Experience

  • Professor
    Harvard Square Academy (HS2)
    Mar-2012 - Present

Category > Programming Posted 08 May 2017 My Price 7.00

Statisticians often are interested in the median

Statisticians often are interested in the median value in a collection of data. In a collection, about the same number of values are greater than the median value as are less than the median value. When the data is sorted, the median value occurs at the midpoint of the collection. But when the data is not sorted, the median is not as easy to find. A problem more general than finding the median is to find the kth smallest value in a collection of n values, where 0 —that is, the smallest integer greater than or equal to. For example, the median value of 11 items is the 6th smallest one. Design an algorithm that uses a minheap to find the kth smallest value in a collection of n values. Using the class of minheaps defined in Project 1, implement your algorithm as a method at the client level.

Answers

(8)
Status NEW Posted 08 May 2017 09:05 AM My Price 7.00

-----------

Attachments

file 1494236485-2171982_1_636297614002908157_kth-smallest-element.docx preview (454 words )
/-----------/ A----------- C+-----------+ p-----------rog-----------ram----------- to----------- fi-----------nd -----------k't-----------h s-----------mal-----------les-----------t e-----------lem-----------ent----------- us-----------ing----------- mi-----------n h-----------eap----------- #-----------inc-----------lud-----------e&a-----------mp;-----------lt;-----------ios-----------tre-----------am&-----------amp-----------;gt-----------; -----------usi-----------ng -----------nam-----------esp-----------ace----------- st-----------d; ----------- //----------- A -----------cla-----------ss -----------for----------- Mi-----------n H-----------eap----------- c-----------las-----------s M-----------inH-----------eap-----------{ ----------- Â----------- Â ----------- i-----------nt -----------*ha-----------rr;----------- //----------- po-----------int-----------er -----------to -----------arr-----------ay -----------of -----------ele-----------men-----------ts -----------in -----------hea-----------p ----------- Â----------- Â ----------- i-----------nt -----------cap-----------aci-----------ty;----------- //----------- ma-----------xim-----------um -----------pos-----------sib-----------le -----------siz-----------e o-----------f m-----------in -----------hea-----------p ----------- Â----------- Â ----------- i-----------nt -----------hea-----------p_s-----------ize-----------; /-----------/ C-----------urr-----------ent----------- nu-----------mbe-----------r o-----------f e-----------lem-----------ent-----------s i-----------n m-----------in -----------hea-----------p -----------pub-----------lic-----------: ----------- Â----------- Â ----------- M-----------inH-----------eap-----------(in-----------t a-----------[],----------- in-----------t s-----------ize-----------); -----------// -----------Con-----------str-----------uct-----------or -----------  ----------- Â----------- Â -----------voi-----------d M-----------inH-----------eap-----------ify-----------(in-----------t
Not Rated(0)