The world’s Largest Sharp Brain Virtual Experts Marketplace Just a click Away
Levels Tought:
Elementary,Middle School,High School,College,University,PHD
| Teaching Since: | May 2017 |
| Last Sign in: | 398 Weeks Ago, 6 Days Ago |
| Questions Answered: | 66690 |
| Tutorials Posted: | 66688 |
MCS,PHD
Argosy University/ Phoniex University/
Nov-2005 - Oct-2011
Professor
Phoniex University
Oct-2001 - Nov-2016
Let Y1, Y2, . . . , Yn denote a random sample from an exponentially distributed population with density f (y | θ) = θe−θ y , 0y. (Note: the mean of this population is μ = 1/θ.) Use the conjugate gamma (α, β) prior for θ to do the following.
a Show that the joint density of Y1, Y2, . . . , Yn, θ is
               ![]()
b Show that the marginal density of Y1, Y2, . . . , Yn is
               ![]()

e Show that the Bayes estimator in part (d) can be written as a weighted average of
 and the prior mean for 1/θ
f Show that the Bayes estimator in part (d) is a biased but consistent estimator for μ = 1/θ.
Hel-----------lo -----------Sir-----------/Ma-----------dam-----------Tha-----------nk -----------You----------- fo-----------r u-----------sin-----------g o-----------ur -----------web-----------sit-----------e a-----------nd -----------and----------- ac-----------qui-----------sit-----------ion----------- of----------- my----------- po-----------ste-----------d s-----------olu-----------tio-----------n.P-----------lea-----------se -----------pin-----------g m-----------e o-----------n c-----------hat----------- I -----------am -----------onl-----------ine----------- or----------- in-----------box----------- me----------- a -----------mes-----------sag-----------e I----------- wi-----------ll