Maurice Tutor

(5)

$15/per page/Negotiable

About Maurice Tutor

Levels Tought:
Elementary,Middle School,High School,College,University,PHD

Expertise:
Algebra,Applied Sciences See all
Algebra,Applied Sciences,Biology,Calculus,Chemistry,Economics,English,Essay writing,Geography,Geology,Health & Medical,Physics,Science Hide all
Teaching Since: May 2017
Last Sign in: 398 Weeks Ago, 3 Days Ago
Questions Answered: 66690
Tutorials Posted: 66688

Education

  • MCS,PHD
    Argosy University/ Phoniex University/
    Nov-2005 - Oct-2011

Experience

  • Professor
    Phoniex University
    Oct-2001 - Nov-2016

Category > Computer Science Posted 27 Aug 2017 My Price 7.00

practice problem

Could someone help with this practice problem? Thanks.


12. Let vertex sets V1 and V2 be defined by V1= {1, 2, 3} and V2 = {a, b, c}. Let E1 = { { 1, 2}, {2, 3} }, and let E2 = { {a, b}, {b, c} } be the edge sets corresponding to the vertex sets V1 and V2, respectively. Write, as a set of ordered pairs, a function f that is a bijection from V1 to V2, satisfying the following condition: if x and y are elements in V1 such that {x,y} is in E1, then f(x) and f(y) are elements in V2 such that {f(x),f(y)} is in E2, and show that your function f satisfies this condition.

 

 

Note: you do not need to show that your function f is a bijection (though it must be, or you won’t get any credit), but you DO need to show that it satisfies the condition “if x and y are elements in V1 such that {x,y} is in E1, then f(x) and f(y) are elements in V2 such that {f(x),f(y)} is in E2.”

Answers

(5)
Status NEW Posted 27 Aug 2017 08:08 AM My Price 7.00

Hel-----------lo -----------Sir-----------/Ma-----------dam-----------Tha-----------nk -----------You----------- fo-----------r u-----------sin-----------g o-----------ur -----------web-----------sit-----------e a-----------nd -----------and----------- ac-----------qui-----------sit-----------ion----------- of----------- my----------- po-----------ste-----------d s-----------olu-----------tio-----------n.P-----------lea-----------se -----------pin-----------g m-----------e o-----------n c-----------hat----------- I -----------am -----------onl-----------ine----------- or----------- in-----------box----------- me----------- a -----------mes-----------sag-----------e I----------- wi-----------ll

Not Rated(0)