Maurice Tutor

(5)

$15/per page/Negotiable

About Maurice Tutor

Levels Tought:
Elementary,Middle School,High School,College,University,PHD

Expertise:
Algebra,Applied Sciences See all
Algebra,Applied Sciences,Biology,Calculus,Chemistry,Economics,English,Essay writing,Geography,Geology,Health & Medical,Physics,Science Hide all
Teaching Since: May 2017
Last Sign in: 398 Weeks Ago, 3 Days Ago
Questions Answered: 66690
Tutorials Posted: 66688

Education

  • MCS,PHD
    Argosy University/ Phoniex University/
    Nov-2005 - Oct-2011

Experience

  • Professor
    Phoniex University
    Oct-2001 - Nov-2016

Category > Computer Science Posted 27 Aug 2017 My Price 7.00

positive integers

The greatest common divisor, or GCD, of two positive integers n and m is the largest number j, such that n and m are both multiples of j. Euclid proposed a simple algorithm for computing GCD(n,m), where n > m, which is based on a concept known as the Chinese Remainder Theorem. The main idea of the algorithm is to repeatedly perform modulo computations of consecutive pairs of the sequence that starts (n,m, . . .), until reaching zero. The last nonzero number in this sequence is the GCD of n and m.

 

For example, for n = 80,844 and m = 25,320, the sequence is as follows:

 

80,844 mod 25,320 = 4,884

25,320 mod 4,884 = 900

4,884 mod 900 = 384

900 mod 384 = 132

384 mod 132 = 120

132 mod 120 = 12

120 mod 12 = 0

 

So, GCD of 80,844 and 25,320 is 12. Write a short C++ function to compute GCD(n,m) for two integers n and m.

Answers

(5)
Status NEW Posted 27 Aug 2017 11:08 AM My Price 7.00

Hel-----------lo -----------Sir-----------/Ma-----------dam-----------Tha-----------nk -----------You----------- fo-----------r u-----------sin-----------g o-----------ur -----------web-----------sit-----------e a-----------nd -----------and----------- ac-----------qui-----------sit-----------ion----------- of----------- my----------- po-----------ste-----------d s-----------olu-----------tio-----------n.P-----------lea-----------se -----------pin-----------g m-----------e o-----------n c-----------hat----------- I -----------am -----------onl-----------ine----------- or----------- in-----------box----------- me----------- a -----------mes-----------sag-----------e I----------- wi-----------ll

Not Rated(0)