The world’s Largest Sharp Brain Virtual Experts Marketplace Just a click Away
Levels Tought:
Elementary,Middle School,High School,College,University,PHD
| Teaching Since: | May 2017 |
| Last Sign in: | 398 Weeks Ago, 3 Days Ago |
| Questions Answered: | 66690 |
| Tutorials Posted: | 66688 |
MCS,PHD
Argosy University/ Phoniex University/
Nov-2005 - Oct-2011
Professor
Phoniex University
Oct-2001 - Nov-2016
1. Consider the problem of making change for n cents using the fewest number of coins. Assume that each coin’s value is an integer.
1) Describe a greedy algorithm to make change consisting of quarters (25 cents each), dimes (10 cents each), nickels (5 cents each), and pennies (1 cent each). Prove that your algorithm yields an optimal solution.
2) Give a set of coin value combination (the value of coins may not be limited to quarter, dime, nickel, or penny) for which the greedy algorithm does not yield an optimal solution. Your set should include a penny value so that there is a solution for every possible value of n. Use an example to justify your answer.
Hel-----------lo -----------Sir-----------/Ma-----------dam-----------Tha-----------nk -----------You----------- fo-----------r u-----------sin-----------g o-----------ur -----------web-----------sit-----------e a-----------nd -----------and----------- ac-----------qui-----------sit-----------ion----------- of----------- my----------- po-----------ste-----------d s-----------olu-----------tio-----------n.P-----------lea-----------se -----------pin-----------g m-----------e o-----------n c-----------hat----------- I -----------am -----------onl-----------ine----------- or----------- in-----------box----------- me----------- a -----------mes-----------sag-----------e I----------- wi-----------ll