Maurice Tutor

(5)

$15/per page/Negotiable

About Maurice Tutor

Levels Tought:
Elementary,Middle School,High School,College,University,PHD

Expertise:
Algebra,Applied Sciences See all
Algebra,Applied Sciences,Biology,Calculus,Chemistry,Economics,English,Essay writing,Geography,Geology,Health & Medical,Physics,Science Hide all
Teaching Since: May 2017
Last Sign in: 398 Weeks Ago, 5 Days Ago
Questions Answered: 66690
Tutorials Posted: 66688

Education

  • MCS,PHD
    Argosy University/ Phoniex University/
    Nov-2005 - Oct-2011

Experience

  • Professor
    Phoniex University
    Oct-2001 - Nov-2016

Category > Computer Science Posted 28 Aug 2017 My Price 6.00

fraudulent claims.

A large number of insurance records are to be examined to develop a model for predicting fraudulent
claims. Of the claims in the historical database, 1% were judged to be fraudulent.
A sample database is taken to develop a model, and oversampling is used to provide a balanced sample in light of the very low response rate. When applied to this sample database (total number of records, N =800), the model ends up correctly classifying 310 frauds, and 270 non-frauds. It misses 90 frauds, and classified 130 records incorrectly as frauds when they were not.
Questions:
a. Produce the classification matrix for the sample as it stands.
b. Find the adjusted misclassification rate (adjusting for the oversampling).
c. What percentage of new records would you expected to be classified as fraudulent?

Answers

(5)
Status NEW Posted 28 Aug 2017 02:08 PM My Price 6.00

Hel-----------lo -----------Sir-----------/Ma-----------dam-----------Tha-----------nk -----------You----------- fo-----------r u-----------sin-----------g o-----------ur -----------web-----------sit-----------e a-----------nd -----------and----------- ac-----------qui-----------sit-----------ion----------- of----------- my----------- po-----------ste-----------d s-----------olu-----------tio-----------n.P-----------lea-----------se -----------pin-----------g m-----------e o-----------n c-----------hat----------- I -----------am -----------onl-----------ine----------- or----------- in-----------box----------- me----------- a -----------mes-----------sag-----------e I----------- wi-----------ll

Not Rated(0)