QuickHelper

(10)

$20/per page/

About QuickHelper

Levels Tought:
Elementary,High School,College,University,PHD

Expertise:
Accounting,Applied Sciences See all
Accounting,Applied Sciences,Business & Finance,Chemistry,Engineering,Health & Medical Hide all
Teaching Since: May 2017
Last Sign in: 352 Weeks Ago, 5 Days Ago
Questions Answered: 20103
Tutorials Posted: 20155

Education

  • MBA, PHD
    Phoniex
    Jul-2007 - Jun-2012

Experience

  • Corportae Manager
    ChevronTexaco Corporation
    Feb-2009 - Nov-2016

Category > Engineering Posted 29 Aug 2017 My Price 11.00

How do I prove that a set is a ring using the properties of a set,

Given: A set R with two operations + and * is a ring if the following 8 properties are shown to be true:

1. closure property of +: For all s and t in R, s+t is also in R

2. closure property of *: For all s and t in R, s*t is also in R

3. additive identity property: There exists an element 0 in R such that s+0=s for all s in R

4. additive inverse property: For every s in R, there exists t in R, such that s+t=0

5. associative property of +: For every q, s, and t in R, q+(s+t)=(q+s)+t

6. associative property of *: For every q, s, and t in R, q*(s*t)=(q*s)*t

7. commutative property of +: For all s and t in R, s+t =t+s

8. left distributivity of * over +: For every q, s, and t in R, q*(s+t)=q*s+q*t

right distributivity of * over +: For every q, s, and t in R, (s+t)*q=s*q+t*q


The set of integers mod m is denoted Zm. The elements are written [x]m and are equivalence classes of integers that have the same integer remainder as x when divided by m. For example, the elements of [–5]m are of the form –5 plus integer multiples of 7, which would be the infinite set of integers {. . . –19, –12, –5, 2, 9, 16, . . .} or, more formally, {y: y = -5 + 7q for some integer q}.
Modular addition, [+], is defined in terms of integer addition by the rule
[a]m [+] [b]m = [a + b]m
Modular multiplication, [*], is defined in terms of integer multiplication by the rule
[a]m [*] [b]m = [a * b]m

Note: For ease of writing notation, follow the convention of using just plain + to represent both [+] and +. Be aware that one symbol can be used to represent two different operations (modular addition versus integer addition). The same principle applies for using * for both multiplications.

A. Prove that the set Z31(integers mod 31) under the operations [+] and [*] is a ring by using the definitions given above to prove the following are true:

1. closure property of [+]

2. closure property of [*]

3. additive identity property

4. additive inverse property

5. associative property of [+]

6. associative property of [*]

7. commutative property of [+]

8. left and right distributive property of [*] over [+]

Attachments:

Answers

(10)
Status NEW Posted 29 Aug 2017 04:08 PM My Price 11.00

Hel-----------lo -----------Sir-----------/Ma-----------dam----------- T-----------han-----------k Y-----------ou -----------for----------- us-----------ing----------- ou-----------r w-----------ebs-----------ite----------- an-----------d a-----------cqu-----------isi-----------tio-----------n o-----------f m-----------y p-----------ost-----------ed -----------sol-----------uti-----------on.----------- Pl-----------eas-----------e p-----------ing----------- me----------- on----------- ch-----------at -----------I a-----------m o-----------nli-----------ne -----------or -----------inb-----------ox -----------me -----------a m-----------ess-----------age----------- I -----------wil-----------l

Not Rated(0)