The world’s Largest Sharp Brain Virtual Experts Marketplace Just a click Away
Levels Tought:
Elementary,Middle School,High School,College,University,PHD
| Teaching Since: | May 2017 |
| Last Sign in: | 398 Weeks Ago, 3 Days Ago |
| Questions Answered: | 66690 |
| Tutorials Posted: | 66688 |
MCS,PHD
Argosy University/ Phoniex University/
Nov-2005 - Oct-2011
Professor
Phoniex University
Oct-2001 - Nov-2016
Quadratic probing
Suppose that we are given a key k to search for in a hash table with positions 0, 1, ..., m - 1, and suppose that we have a hash function h mapping the key space into the set {0, 1, ..., m - 1}. The search scheme is as follows.
1. Compute the value i ← h(k), and set j ← 0.
2. Probe in position i for the desired key k. If you find it, or if this position is empty, terminate the search.
3. Set j ← (j + 1) mod m and i ← (i + j) mod m, and return to step 2. Assume that m is a power of 2.
a. Show that this scheme is an instance of the general "quadratic probing" scheme by exhibiting the appropriate constants c1 and c2 for equation (11.5).
b. Prove that this algorithm examines every table position in the worst case.
Hel-----------lo -----------Sir-----------/Ma-----------dam-----------Tha-----------nk -----------You----------- fo-----------r u-----------sin-----------g o-----------ur -----------web-----------sit-----------e a-----------nd -----------and----------- ac-----------qui-----------sit-----------ion----------- of----------- my----------- po-----------ste-----------d s-----------olu-----------tio-----------n.P-----------lea-----------se -----------pin-----------g m-----------e o-----------n c-----------hat----------- I -----------am -----------onl-----------ine----------- or----------- in-----------box----------- me----------- a -----------mes-----------sag-----------e I----------- wi-----------ll