Maurice Tutor

(5)

$15/per page/Negotiable

About Maurice Tutor

Levels Tought:
Elementary,Middle School,High School,College,University,PHD

Expertise:
Algebra,Applied Sciences See all
Algebra,Applied Sciences,Biology,Calculus,Chemistry,Economics,English,Essay writing,Geography,Geology,Health & Medical,Physics,Science Hide all
Teaching Since: May 2017
Last Sign in: 398 Weeks Ago, 1 Day Ago
Questions Answered: 66690
Tutorials Posted: 66688

Education

  • MCS,PHD
    Argosy University/ Phoniex University/
    Nov-2005 - Oct-2011

Experience

  • Professor
    Phoniex University
    Oct-2001 - Nov-2016

Category > Computer Science Posted 17 Sep 2017 My Price 10.00

Variations on O and Ω

Variations on O and Ω

Some authors define Ω in a slightly different way than we do; let"s use  (read "omega

infinity") for this alternative definition. We say  that if there exists a positive

constant c such that f(n) ≥ cg(n) ≥ 0 for infinitely many integers n.

a. Show that for any two functions f(n) and g(n) that are asymptotically nonnegative, either f(n) = O(g(n)) or or both, whereas this is not true if we use Ω in place of .

b. Describe the potential advantages and disadvantages of using instead of Ω to characterize the running times of programs.

Some authors also define O in a slightly different manner; let"s use O" for the alternative definition. We say that f(n) = O"(g(n)) if and only if |f(n)| = O(g(n)).

c. What happens to each direction of the "if and only if" in Theorem 3.1 if we substitute O" for O but still use Ω?

Some authors define Õ (read "soft-oh") to mean O with logarithmic factors ignored:

Õ (g(n)) = {f(n): there exist positive constants c, k, and n0 such that 0 ≤ f(n) ≤ cg(n) lgk(n) for

all n ≥ n0}.

d. Define and in a similar manner. Prove the corresponding analog to Theorem 3.1.

 

Theorem 3.1.

For any two functions f(n) and g(n), we have f(n) = Θ(g(n)) if and only if f(n) = O(g(n)) and f(n) = Ω(g(n)).

 

Iterated functions

The iteration operator* used in the lg* function can be applied to any monotonically increasing function f(n) over the reals. For a given constant c ? R, we define the iterated function  by

which need not be well-defined in all cases. In other words, the quantity  is the number of iterated applications of the function f required to reduce its argument down to c or less.

For each of the following functions f(n) and constants c, give as tight a bound as possible on

Answers

(5)
Status NEW Posted 17 Sep 2017 07:09 AM My Price 10.00

Hel-----------lo -----------Sir-----------/Ma-----------dam-----------Tha-----------nk -----------You----------- fo-----------r u-----------sin-----------g o-----------ur -----------web-----------sit-----------e a-----------nd -----------and----------- ac-----------qui-----------sit-----------ion----------- of----------- my----------- po-----------ste-----------d s-----------olu-----------tio-----------n.P-----------lea-----------se -----------pin-----------g m-----------e o-----------n c-----------hat----------- I -----------am -----------onl-----------ine----------- or----------- in-----------box----------- me----------- a -----------mes-----------sag-----------e I----------- wi-----------ll

Not Rated(0)