The world’s Largest Sharp Brain Virtual Experts Marketplace Just a click Away
Levels Tought:
Elementary,Middle School,High School,College,University,PHD
| Teaching Since: | May 2017 |
| Last Sign in: | 398 Weeks Ago, 1 Day Ago |
| Questions Answered: | 66690 |
| Tutorials Posted: | 66688 |
MCS,PHD
Argosy University/ Phoniex University/
Nov-2005 - Oct-2011
Professor
Phoniex University
Oct-2001 - Nov-2016
Variations on O and Ω
Some authors define Ω in a slightly different way than we do; let"s useÂ
 (read "omega
infinity") for this alternative definition. We sayÂ
 that if there exists a positive
constant c such that f(n) ≥ cg(n) ≥ 0 for infinitely many integers n.
a. Show that for any two functions f(n) and g(n) that are asymptotically nonnegative, either f(n) = O(g(n)) or or both, whereas this is not true if we use Ω in place of .
b. Describe the potential advantages and disadvantages of using instead of Ω to characterize the running times of programs.
Some authors also define O in a slightly different manner; let"s use O" for the alternative definition. We say that f(n) = O"(g(n)) if and only if |f(n)| = O(g(n)).
c. What happens to each direction of the "if and only if" in Theorem 3.1 if we substitute O" for O but still use Ω?
Some authors define Õ (read "soft-oh") to mean O with logarithmic factors ignored:
Õ (g(n)) = {f(n): there exist positive constants c, k, and n0 such that 0 ≤ f(n) ≤ cg(n) lgk(n) for
all n ≥ n0}.
d. Define and in a similar manner. Prove the corresponding analog to Theorem 3.1.
Â
Theorem 3.1.
For any two functions f(n) and g(n), we have f(n) = Θ(g(n)) if and only if f(n) = O(g(n)) and f(n) = Ω(g(n)).
Â
Iterated functions
The iteration operator* used in the lg* function can be applied to any monotonically increasing function f(n) over the reals. For a given constant c ? R, we define the iterated functionÂ
 by

which need not be well-defined in all cases. In other words, the quantityÂ
 is the number of iterated applications of the function f required to reduce its argument down to c or less.
For each of the following functions f(n) and constants c, give as tight a bound as possible on


Hel-----------lo -----------Sir-----------/Ma-----------dam-----------Tha-----------nk -----------You----------- fo-----------r u-----------sin-----------g o-----------ur -----------web-----------sit-----------e a-----------nd -----------and----------- ac-----------qui-----------sit-----------ion----------- of----------- my----------- po-----------ste-----------d s-----------olu-----------tio-----------n.P-----------lea-----------se -----------pin-----------g m-----------e o-----------n c-----------hat----------- I -----------am -----------onl-----------ine----------- or----------- in-----------box----------- me----------- a -----------mes-----------sag-----------e I----------- wi-----------ll